Preparation of hydrophilic PVDF membranes through in situ assembly of phytate-polyethyleneimine-Fe3+ for efficient separation of herbal volatile oil from oily water.
Wenling Fan, Jiali Wu, Long Sun, Meiqi Gao, Xiaotong Zhang
{"title":"Preparation of hydrophilic PVDF membranes through in situ assembly of phytate-polyethyleneimine-Fe<sup>3+</sup> for efficient separation of herbal volatile oil from oily water.","authors":"Wenling Fan, Jiali Wu, Long Sun, Meiqi Gao, Xiaotong Zhang","doi":"10.1007/s11356-024-35448-3","DOIUrl":null,"url":null,"abstract":"<p><p>In the realm of oil-water separation technologies, membrane-based separation emerges as an efficacious approach. Nevertheless, crafting a hydrophilic membrane capable of effectively segregating herbal volatile oil remains a formidable challenge. Our study introduces a facile in situ assembly strategy for fabricating a double-crosslinked composite coating comprising phytate (PA)-polyethyleneimine (PEI) polyelectrolyte complexes and PA-Fe<sup>3</sup>⁺ assemblies. The PA within the PA-PEI/Fe<sup>3</sup>⁺ coatings form a double cross-linking layer through interactions with amine groups and metal ions, thereby enhancing interfacial interactions and structural integrity of the membranes. Consequently, the resultant PVDF/PA-PEI/Fe<sup>3</sup>⁺ membranes exhibit improved coating stability, pronounced hydrophilicity, and exceptional antifouling capabilities, rendering them highly suitable for the separation of diverse herbal volatile oil-in-water emulsions. Furthermore, they possess the capability for reuse with an average retention ratio exceeding 90% and a pure water flux reaching up to 3200 L·m⁻<sup>2</sup>·h⁻<sup>1</sup>. Additionally, they demonstrate long-term stability and resistance to corrosion. With a simplistic yet efficient preparation process, the PVDF/PA-PEI/Fe<sup>3</sup>⁺ membrane holds significant potential for the extraction of oils from herbal volatile oil-in-water emulsions.</p>","PeriodicalId":545,"journal":{"name":"Environmental Science and Pollution Research","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science and Pollution Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11356-024-35448-3","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
In the realm of oil-water separation technologies, membrane-based separation emerges as an efficacious approach. Nevertheless, crafting a hydrophilic membrane capable of effectively segregating herbal volatile oil remains a formidable challenge. Our study introduces a facile in situ assembly strategy for fabricating a double-crosslinked composite coating comprising phytate (PA)-polyethyleneimine (PEI) polyelectrolyte complexes and PA-Fe3⁺ assemblies. The PA within the PA-PEI/Fe3⁺ coatings form a double cross-linking layer through interactions with amine groups and metal ions, thereby enhancing interfacial interactions and structural integrity of the membranes. Consequently, the resultant PVDF/PA-PEI/Fe3⁺ membranes exhibit improved coating stability, pronounced hydrophilicity, and exceptional antifouling capabilities, rendering them highly suitable for the separation of diverse herbal volatile oil-in-water emulsions. Furthermore, they possess the capability for reuse with an average retention ratio exceeding 90% and a pure water flux reaching up to 3200 L·m⁻2·h⁻1. Additionally, they demonstrate long-term stability and resistance to corrosion. With a simplistic yet efficient preparation process, the PVDF/PA-PEI/Fe3⁺ membrane holds significant potential for the extraction of oils from herbal volatile oil-in-water emulsions.
期刊介绍:
Environmental Science and Pollution Research (ESPR) serves the international community in all areas of Environmental Science and related subjects with emphasis on chemical compounds. This includes:
- Terrestrial Biology and Ecology
- Aquatic Biology and Ecology
- Atmospheric Chemistry
- Environmental Microbiology/Biobased Energy Sources
- Phytoremediation and Ecosystem Restoration
- Environmental Analyses and Monitoring
- Assessment of Risks and Interactions of Pollutants in the Environment
- Conservation Biology and Sustainable Agriculture
- Impact of Chemicals/Pollutants on Human and Animal Health
It reports from a broad interdisciplinary outlook.