{"title":"Orientational Disorder of Alcohol Molecules at Their Solution Surfaces in Low Concentration Range: A Molecular Dynamics Simulation Study.","authors":"Mayu Hirose, Tatsuya Ishiyama","doi":"10.1021/acs.jpcb.4c04611","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular dynamics (MD) simulations of short-chain alcohols (methanol, ethanol, and 1-propanol) in solution were carried out to examine the orientational disordering (randomizing) of alcohol molecules at the surface under diluted conditions. Recent vibrational sum frequency generation (VSFG) spectroscopy, combined with photoelectron spectroscopy, has successfully measured the disordering structure at low concentrations. The present MD simulations accurately reproduce this observation for the first time. To ensure reliable results through MD simulations, several widely used force field models for water and alcohol, including polarizable models, were examined. This examination involved a comparison of structural and thermodynamic quantities, such as surface density times orientation and surface excess concentration, which were obtained through surface-specific measurements like VSFG spectroscopy and surface tension measurements. It is found that the width of the density profile for alcohol molecules at the surface, along the surface normal, increases as the concentration decreases in the diluted condition, which is consistent with the results obtained from the previous neutron and X-ray grazing incidence reflection experiments. A molecular mechanism explaining the disordering of alcohol molecules with decreasing concentration is also discussed.</p>","PeriodicalId":60,"journal":{"name":"The Journal of Physical Chemistry B","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpcb.4c04611","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Molecular dynamics (MD) simulations of short-chain alcohols (methanol, ethanol, and 1-propanol) in solution were carried out to examine the orientational disordering (randomizing) of alcohol molecules at the surface under diluted conditions. Recent vibrational sum frequency generation (VSFG) spectroscopy, combined with photoelectron spectroscopy, has successfully measured the disordering structure at low concentrations. The present MD simulations accurately reproduce this observation for the first time. To ensure reliable results through MD simulations, several widely used force field models for water and alcohol, including polarizable models, were examined. This examination involved a comparison of structural and thermodynamic quantities, such as surface density times orientation and surface excess concentration, which were obtained through surface-specific measurements like VSFG spectroscopy and surface tension measurements. It is found that the width of the density profile for alcohol molecules at the surface, along the surface normal, increases as the concentration decreases in the diluted condition, which is consistent with the results obtained from the previous neutron and X-ray grazing incidence reflection experiments. A molecular mechanism explaining the disordering of alcohol molecules with decreasing concentration is also discussed.
期刊介绍:
An essential criterion for acceptance of research articles in the journal is that they provide new physical insight. Please refer to the New Physical Insights virtual issue on what constitutes new physical insight. Manuscripts that are essentially reporting data or applications of data are, in general, not suitable for publication in JPC B.