Elevated Perspectives: Unraveling Cardiovascular Dynamics in High-Altitude Realms.

IF 2.4 Q2 CARDIAC & CARDIOVASCULAR SYSTEMS Current Cardiology Reviews Pub Date : 2024-11-05 DOI:10.2174/011573403X308818241030051249
Kanishk Aggarwal, Mayur Srinivas Pathan, Mayank Dhalani, Inder P Kaur, Fnu Anamika, Vasu Gupta, Dilip Kumar Jayaraman, Rohit Jain
{"title":"Elevated Perspectives: Unraveling Cardiovascular Dynamics in High-Altitude Realms.","authors":"Kanishk Aggarwal, Mayur Srinivas Pathan, Mayank Dhalani, Inder P Kaur, Fnu Anamika, Vasu Gupta, Dilip Kumar Jayaraman, Rohit Jain","doi":"10.2174/011573403X308818241030051249","DOIUrl":null,"url":null,"abstract":"<p><p>High-altitude regions pose distinctive challenges for cardiovascular health because of decreased oxygen levels, reduced barometric pressure, and colder temperatures. Approximately 82 million people live above 2400 meters, while over 100 million people visit these heights annually. Individuals ascending rapidly or those with pre-existing cardiovascular conditions are particularly vulnerable to altitude-related illnesses, including Acute Mountain Sickness (AMS) and Chronic Mountain Sickness (CMS). The cardiovascular system struggles to adapt to hypoxic stress, which can lead to arrhythmias, systemic hypertension, and right ventricular failure. Pathophysiologically, high-altitude exposure triggers immediate increases in cardiac output and heart rate, often due to enhanced sympathetic activity. Over time, acclimatisation involves complex changes, such as reduced stroke volume and increased blood volume. The pulmonary vasculature also undergoes significant alterations, including hypoxic pulmonary vasoconstriction and vascular remodelling, contributing to conditions, like pulmonary hypertension and high-altitude pulmonary edema. Genetic adaptations in populations living at high altitudes, such as gene variations linked to hypoxia response, further influence these physiological processes. Regarding cardiovascular disease risk, stable coronary artery disease patients generally do not face significant adverse outcomes at altitudes up to 3500 meters. However, those with unstable angina or recent cardiac interventions should avoid high-altitude exposure to prevent exacerbation. Remarkably, high-altitude living correlates with reduced cardiovascular mortality rates, possibly due to improved air quality and hypoxia-induced adaptations. Additionally, there is a higher incidence of congenital heart disease among children born at high altitudes, highlighting the profound impact of hypoxia on heart development. Understanding these dynamics is crucial for managing risks and improving health outcomes in high-altitude environments.</p>","PeriodicalId":10832,"journal":{"name":"Current Cardiology Reviews","volume":" ","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Cardiology Reviews","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/011573403X308818241030051249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

High-altitude regions pose distinctive challenges for cardiovascular health because of decreased oxygen levels, reduced barometric pressure, and colder temperatures. Approximately 82 million people live above 2400 meters, while over 100 million people visit these heights annually. Individuals ascending rapidly or those with pre-existing cardiovascular conditions are particularly vulnerable to altitude-related illnesses, including Acute Mountain Sickness (AMS) and Chronic Mountain Sickness (CMS). The cardiovascular system struggles to adapt to hypoxic stress, which can lead to arrhythmias, systemic hypertension, and right ventricular failure. Pathophysiologically, high-altitude exposure triggers immediate increases in cardiac output and heart rate, often due to enhanced sympathetic activity. Over time, acclimatisation involves complex changes, such as reduced stroke volume and increased blood volume. The pulmonary vasculature also undergoes significant alterations, including hypoxic pulmonary vasoconstriction and vascular remodelling, contributing to conditions, like pulmonary hypertension and high-altitude pulmonary edema. Genetic adaptations in populations living at high altitudes, such as gene variations linked to hypoxia response, further influence these physiological processes. Regarding cardiovascular disease risk, stable coronary artery disease patients generally do not face significant adverse outcomes at altitudes up to 3500 meters. However, those with unstable angina or recent cardiac interventions should avoid high-altitude exposure to prevent exacerbation. Remarkably, high-altitude living correlates with reduced cardiovascular mortality rates, possibly due to improved air quality and hypoxia-induced adaptations. Additionally, there is a higher incidence of congenital heart disease among children born at high altitudes, highlighting the profound impact of hypoxia on heart development. Understanding these dynamics is crucial for managing risks and improving health outcomes in high-altitude environments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高空视角:揭示高海拔地区的心血管动态。
高海拔地区由于氧气含量减少、气压降低和气温较低,给心血管健康带来了独特的挑战。大约有 8200 万人生活在海拔 2400 米以上的地区,每年有超过 1 亿人前往这些高海拔地区。快速登山的人或原有心血管疾病的人特别容易患上与高海拔有关的疾病,包括急性晕山症(AMS)和慢性晕山症(CMS)。心血管系统难以适应缺氧压力,可能导致心律失常、全身性高血压和右心室衰竭。从病理生理学角度看,高海拔暴露会导致心输出量和心率立即增加,这通常是由于交感神经活动增强所致。随着时间的推移,适应过程会发生复杂的变化,如每搏容量减少和血容量增加。肺血管也会发生重大变化,包括缺氧性肺血管收缩和血管重塑,从而导致肺动脉高压和高海拔肺水肿等病症。生活在高海拔地区人群的遗传适应性,如与缺氧反应有关的基因变异,进一步影响了这些生理过程。在心血管疾病风险方面,稳定型冠状动脉疾病患者在海拔 3500 米以下一般不会面临严重的不良后果。不过,那些患有不稳定型心绞痛或近期接受过心脏介入治疗的患者应避免高海拔地区,以防病情加重。值得注意的是,高海拔生活与心血管疾病死亡率的降低有关,这可能是由于空气质量的改善和缺氧引起的适应。此外,在高海拔地区出生的儿童先天性心脏病发病率较高,这凸显了缺氧对心脏发育的深远影响。了解这些动态变化对于管理高海拔环境中的风险和改善健康状况至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Cardiology Reviews
Current Cardiology Reviews CARDIAC & CARDIOVASCULAR SYSTEMS-
CiteScore
3.70
自引率
10.50%
发文量
117
期刊介绍: Current Cardiology Reviews publishes frontier reviews of high quality on all the latest advances on the practical and clinical approach to the diagnosis and treatment of cardiovascular disease. All relevant areas are covered by the journal including arrhythmia, congestive heart failure, cardiomyopathy, congenital heart disease, drugs, methodology, pacing, and preventive cardiology. The journal is essential reading for all researchers and clinicians in cardiology.
期刊最新文献
Elevated Perspectives: Unraveling Cardiovascular Dynamics in High-Altitude Realms. Diabetic Cardiomyopathy: An Update on Emerging Pathological Mechanisms. Heart Rate Variability and Heart Failure with Reduced Ejection Fraction: A Systematic Review of Literature. Comprehensive Review of Coronary Artery Anatomy Relevant to Cardiac Surgery. Unveiling the Complexities: Exploring Mechanisms of Anthracycline-Induced Cardiotoxicity.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1