Jayanaraian F. Martins Andrade , Agnes-Valencia Weiss , Marcílio Cunha-Filho , Guilherme M. Gelfuso , Tais Gratieri , Marc Schneider
{"title":"Effect of gelatin nanoparticles’ size and charge on iontophoretic targeted deposition to the hair follicles","authors":"Jayanaraian F. Martins Andrade , Agnes-Valencia Weiss , Marcílio Cunha-Filho , Guilherme M. Gelfuso , Tais Gratieri , Marc Schneider","doi":"10.1016/j.ijpharm.2024.124906","DOIUrl":null,"url":null,"abstract":"<div><div>Hair follicles (HFs) represent a route of interest to drug delivery for treating several skin conditions. Iontophoresis, on the other hand, is a physical method to enhance drug permeation by applying a low electrical current to the formulation. HFs can be targeted following topical iontophoretic application, as they represent a pathway of lower electrical resistance, as well as a drug reservoir, in particular useful for nanoparticles (NPs), which can preferably accumulate in these structures. Combining both strategies may provide optimal results, but the literature still lacks evidence of the ideal NP characteristics for the iontophoretic drug delivery targeting the HFs. Here, we aimed to evaluate the effect of gelatin NPs’ size and charge under iontophoresis application on NPs’ deposition into the HFs. Four gelatin NP formulations were produced with varying gelatin concentrations and gelatin types (positively charged type A and negatively charged type B), with sizes ranging from 220 to 770 nm. A fluorescent dye, TRITC-dextran 150 kDa, was encapsulated for monitoring NPs deposition. Cutaneous penetration experiments were performed <em>in vitro</em> with and without iontophoresis for 6 h with pig ear skin. The deposition profile was assessed by confocal laser scanning microscopy. Photomicrographs showed a higher accumulation of the larger positively charged NPs (AL), reaching deeper portions of HFs, and showed iontophoresis further increased their deposition, resulting in the highest signal. In conclusion, these findings shed light on the applications of NPs and bring novel treatment opportunities for several diseases compromising the hair follicles.</div></div>","PeriodicalId":14187,"journal":{"name":"International Journal of Pharmaceutics","volume":"667 ","pages":"Article 124906"},"PeriodicalIF":5.3000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378517324011402","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Hair follicles (HFs) represent a route of interest to drug delivery for treating several skin conditions. Iontophoresis, on the other hand, is a physical method to enhance drug permeation by applying a low electrical current to the formulation. HFs can be targeted following topical iontophoretic application, as they represent a pathway of lower electrical resistance, as well as a drug reservoir, in particular useful for nanoparticles (NPs), which can preferably accumulate in these structures. Combining both strategies may provide optimal results, but the literature still lacks evidence of the ideal NP characteristics for the iontophoretic drug delivery targeting the HFs. Here, we aimed to evaluate the effect of gelatin NPs’ size and charge under iontophoresis application on NPs’ deposition into the HFs. Four gelatin NP formulations were produced with varying gelatin concentrations and gelatin types (positively charged type A and negatively charged type B), with sizes ranging from 220 to 770 nm. A fluorescent dye, TRITC-dextran 150 kDa, was encapsulated for monitoring NPs deposition. Cutaneous penetration experiments were performed in vitro with and without iontophoresis for 6 h with pig ear skin. The deposition profile was assessed by confocal laser scanning microscopy. Photomicrographs showed a higher accumulation of the larger positively charged NPs (AL), reaching deeper portions of HFs, and showed iontophoresis further increased their deposition, resulting in the highest signal. In conclusion, these findings shed light on the applications of NPs and bring novel treatment opportunities for several diseases compromising the hair follicles.
期刊介绍:
The International Journal of Pharmaceutics is the third most cited journal in the "Pharmacy & Pharmacology" category out of 366 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.