Hongfan Che, Junzhi Xu, Dong Wu, Siliang Chen, Chengkang Liu, Chongbao Zhao, Kun Peng
{"title":"Reactive oxygen species-responsive polydopamine-PtCuTe nanoparticle-loaded microneedle system for promoting the healing of infected skin wounds.","authors":"Hongfan Che, Junzhi Xu, Dong Wu, Siliang Chen, Chengkang Liu, Chongbao Zhao, Kun Peng","doi":"10.1016/j.jconrel.2024.11.002","DOIUrl":null,"url":null,"abstract":"<p><p>Nanozymes, known for their high efficiency in scavenging reactive oxygen species (ROS), have received significant attention in promoting the healing of infected wounds. Herein, we reported a novel multifunctional PDA-PtCuTe nanozyme with excellent ROS scavenging, antibacterial, pro-angiogenic, anti-inflammatory, and immune regulatory properties. It was loaded onto microneedles (PTPP-MN) for treating infected wounds. In vitro experiments demonstrated its ability to scavenge ROS and exhibit antioxidant properties. Compared to PT-MN (11.03 ± 3.37 %) and PTP-MN (42.30 ± 2.60 %), the ROS scavenging rate of PTPP-MN reached 63.63 ± 4.42 %. The microneedle exhibits good biocompatibility, stimulating fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, it effectively eliminates ROS and provides antioxidant effects while inhibiting the viability of S. aureus and E. coli. Animal experiments showed that the PTPP-MN group achieved near-complete re-epithelialization by the third day compared to other groups. Histological observations revealed that the PTPP-MN group exhibited enhanced granulation tissue formation, epithelial regeneration, and angiogenesis. After PTPP-MN treatment, the local immune response shifted from a pro-inflammatory state to a pro-regenerative state. Our results indicate that PTPP-MN holds great promise for infected wound healing with reduced scar formation.</p>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":null,"pages":null},"PeriodicalIF":10.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.jconrel.2024.11.002","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanozymes, known for their high efficiency in scavenging reactive oxygen species (ROS), have received significant attention in promoting the healing of infected wounds. Herein, we reported a novel multifunctional PDA-PtCuTe nanozyme with excellent ROS scavenging, antibacterial, pro-angiogenic, anti-inflammatory, and immune regulatory properties. It was loaded onto microneedles (PTPP-MN) for treating infected wounds. In vitro experiments demonstrated its ability to scavenge ROS and exhibit antioxidant properties. Compared to PT-MN (11.03 ± 3.37 %) and PTP-MN (42.30 ± 2.60 %), the ROS scavenging rate of PTPP-MN reached 63.63 ± 4.42 %. The microneedle exhibits good biocompatibility, stimulating fibroblast migration, endothelial angiogenesis, and M2 macrophage polarization. Additionally, it effectively eliminates ROS and provides antioxidant effects while inhibiting the viability of S. aureus and E. coli. Animal experiments showed that the PTPP-MN group achieved near-complete re-epithelialization by the third day compared to other groups. Histological observations revealed that the PTPP-MN group exhibited enhanced granulation tissue formation, epithelial regeneration, and angiogenesis. After PTPP-MN treatment, the local immune response shifted from a pro-inflammatory state to a pro-regenerative state. Our results indicate that PTPP-MN holds great promise for infected wound healing with reduced scar formation.
期刊介绍:
The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System.
Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries.
Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.