{"title":"Mixture Cure Semiparametric Accelerated Failure Time Models With Partly Interval-Censored Data","authors":"Isabel Li, Jun Ma, Benoit Liquet","doi":"10.1002/bimj.202300203","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In practical survival analysis, the situation of no event for a patient can arise even after a long period of waiting time, which means a portion of the population may never experience the event of interest. Under this circumstance, one remedy is to adopt a mixture cure Cox model to analyze the survival data. However, if there clearly exhibits an acceleration (or deceleration) factor among their survival times, then an accelerated failure time (AFT) model will be preferred, leading to a mixture cure AFT model. In this paper, we consider a penalized likelihood method to estimate the mixture cure semiparametric AFT models, where the unknown baseline hazard is approximated using Gaussian basis functions. We allow partly interval-censored survival data which can include event times and left-, right-, and interval-censoring times. The penalty function helps to achieve a smooth estimate of the baseline hazard function. We will also provide asymptotic properties to the estimates so that inferences can be made on regression parameters and hazard-related quantities. Simulation studies are conducted to evaluate the model performance, which includes a comparative study with an existing method from the <span>smcure</span> <span>R</span> package. The results show that our proposed penalized likelihood method has acceptable performance in general and produces less bias when faced with the identifiability issue compared to <span>smcure</span>. To illustrate the application of our method, a real case study involving melanoma recurrence is conducted and reported. Our model is implemented in our R package <span>aftQnp</span> which is available from https://github.com/Isabellee4555/aftQnP.</p></div>","PeriodicalId":55360,"journal":{"name":"Biometrical Journal","volume":"66 8","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrical Journal","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bimj.202300203","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In practical survival analysis, the situation of no event for a patient can arise even after a long period of waiting time, which means a portion of the population may never experience the event of interest. Under this circumstance, one remedy is to adopt a mixture cure Cox model to analyze the survival data. However, if there clearly exhibits an acceleration (or deceleration) factor among their survival times, then an accelerated failure time (AFT) model will be preferred, leading to a mixture cure AFT model. In this paper, we consider a penalized likelihood method to estimate the mixture cure semiparametric AFT models, where the unknown baseline hazard is approximated using Gaussian basis functions. We allow partly interval-censored survival data which can include event times and left-, right-, and interval-censoring times. The penalty function helps to achieve a smooth estimate of the baseline hazard function. We will also provide asymptotic properties to the estimates so that inferences can be made on regression parameters and hazard-related quantities. Simulation studies are conducted to evaluate the model performance, which includes a comparative study with an existing method from the smcureR package. The results show that our proposed penalized likelihood method has acceptable performance in general and produces less bias when faced with the identifiability issue compared to smcure. To illustrate the application of our method, a real case study involving melanoma recurrence is conducted and reported. Our model is implemented in our R package aftQnp which is available from https://github.com/Isabellee4555/aftQnP.
期刊介绍:
Biometrical Journal publishes papers on statistical methods and their applications in life sciences including medicine, environmental sciences and agriculture. Methodological developments should be motivated by an interesting and relevant problem from these areas. Ideally the manuscript should include a description of the problem and a section detailing the application of the new methodology to the problem. Case studies, review articles and letters to the editors are also welcome. Papers containing only extensive mathematical theory are not suitable for publication in Biometrical Journal.