Exposure of RAW264.7 macrophages to exhaust emissions (gases and PAH) and non-exhaust emissions (tire particles) induces additive or synergistic TNF-α production depending on the tire particle size
{"title":"Exposure of RAW264.7 macrophages to exhaust emissions (gases and PAH) and non-exhaust emissions (tire particles) induces additive or synergistic TNF-α production depending on the tire particle size","authors":"Abderrahmane Bouredji , Riadh Lakhmi , Bogdan Muresan-Paslaru , Jérémie Pourchez , Valérie Forest","doi":"10.1016/j.tox.2024.153990","DOIUrl":null,"url":null,"abstract":"<div><div>Road traffic is a major contributor to air pollution and consequently negatively affects human health. Car pollution originates both from exhaust emissions (EE) and non-exhaust emissions (NEE, such as tire and brake wear particles, erosion of road surfaces and resuspension of road dust). While the toxicity of EE and NEE has been characterized separately, their combined effects are poorly documented. However, we are constantly exposed to a mixture of pollutants and their interactions should not be neglected as they may significantly impact their toxicological profile resulting in additive, synergistic or antagonistic effects. To fill this gap, we investigated <em>in vitro</em> the combined toxicity of exhaust gases and benzo[<em>a</em>]pyrene (representative of EE) and tire particles (representative of NEE). Macrophages from the RAW264.7 cell line were exposed for 24 h to tire particles (TP) of variable size (6–113 µm), alone or in combination with exhaust gases (CO<sub>2</sub>, CO, NO, NO<sub>2</sub>) and benzo[<em>a</em>]pyrene (B[<em>a</em>]P) as an archetype of polycyclic aromatic hydrocarbon (PAH). The cell response was assessed in terms of cytotoxicity, proinflammatory response and oxidative stress. TP, gases and B[<em>a</em>]P, alone or in combination triggered neither cytotoxicity nor oxidative stress. On the contrary, a proinflammatory response was elicited with two different profiles depending on the size of the TP: TNF-α production was either slightly (with the finest TP) or strongly (with coarse TP) increased in the presence of gases and B[<em>a</em>]P, suggesting that the effects of TP, gases and B[<em>a</em>]P were either additive or synergistic, depending on TP size.</div></div>","PeriodicalId":23159,"journal":{"name":"Toxicology","volume":"509 ","pages":"Article 153990"},"PeriodicalIF":4.8000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300483X24002713","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Road traffic is a major contributor to air pollution and consequently negatively affects human health. Car pollution originates both from exhaust emissions (EE) and non-exhaust emissions (NEE, such as tire and brake wear particles, erosion of road surfaces and resuspension of road dust). While the toxicity of EE and NEE has been characterized separately, their combined effects are poorly documented. However, we are constantly exposed to a mixture of pollutants and their interactions should not be neglected as they may significantly impact their toxicological profile resulting in additive, synergistic or antagonistic effects. To fill this gap, we investigated in vitro the combined toxicity of exhaust gases and benzo[a]pyrene (representative of EE) and tire particles (representative of NEE). Macrophages from the RAW264.7 cell line were exposed for 24 h to tire particles (TP) of variable size (6–113 µm), alone or in combination with exhaust gases (CO2, CO, NO, NO2) and benzo[a]pyrene (B[a]P) as an archetype of polycyclic aromatic hydrocarbon (PAH). The cell response was assessed in terms of cytotoxicity, proinflammatory response and oxidative stress. TP, gases and B[a]P, alone or in combination triggered neither cytotoxicity nor oxidative stress. On the contrary, a proinflammatory response was elicited with two different profiles depending on the size of the TP: TNF-α production was either slightly (with the finest TP) or strongly (with coarse TP) increased in the presence of gases and B[a]P, suggesting that the effects of TP, gases and B[a]P were either additive or synergistic, depending on TP size.
期刊介绍:
Toxicology is an international, peer-reviewed journal that publishes only the highest quality original scientific research and critical reviews describing hypothesis-based investigations into mechanisms of toxicity associated with exposures to xenobiotic chemicals, particularly as it relates to human health. In this respect "mechanisms" is defined on both the macro (e.g. physiological, biological, kinetic, species, sex, etc.) and molecular (genomic, transcriptomic, metabolic, etc.) scale. Emphasis is placed on findings that identify novel hazards and that can be extrapolated to exposures and mechanisms that are relevant to estimating human risk. Toxicology also publishes brief communications, personal commentaries and opinion articles, as well as concise expert reviews on contemporary topics. All research and review articles published in Toxicology are subject to rigorous peer review. Authors are asked to contact the Editor-in-Chief prior to submitting review articles or commentaries for consideration for publication in Toxicology.