Sai Pavan Kumar Veeranki, Akhila Abdulnazar, Diether Kramer, Markus Kreuzthaler, David Benjamin Lumenta
{"title":"Multi-label text classification via secondary use of large clinical real-world data sets.","authors":"Sai Pavan Kumar Veeranki, Akhila Abdulnazar, Diether Kramer, Markus Kreuzthaler, David Benjamin Lumenta","doi":"10.1038/s41598-024-76424-8","DOIUrl":null,"url":null,"abstract":"<p><p>Procedural coding presents a taxing challenge for clinicians. However, recent advances in natural language processing offer a promising avenue for developing applications that assist clinicians, thereby alleviating their administrative burdens. This study seeks to create an application capable of predicting procedure codes by analysing clinicians' operative notes, aiming to streamline their workflow and enhance efficiency. We downstreamed an existing and a native German medical BERT model in a secondary use scenario, utilizing already coded surgery notes to model the coding procedure as a multi-label classification task. In comparison to the transformer-based architecture, we were levering the non-contextual model fastText, a convolutional neural network, a support vector machine and logistic regression for a comparative analysis of possible coding performance. About 350,000 notes were used for model adaption. By considering the top five suggested procedure codes from medBERT.de, surgeryBERT.at, fastText, a convolutional neural network, a support vector machine and a logistic regression, the mean average precision achieved was 0.880, 0.867, 0.870, 0.851, 0.870 and 0.805 respectively. Support vector machines performed better for surgery reports with a sequence length greater than 512, achieving a mean average precision of 0.872 in comparison to 0.840 for fastText, 0.837 for medBERT.de and 0.820 for surgeryBERT.at. A prototypical front-end application for coding support was additionally implemented. The problem of predicting procedure codes from a given operative report can be successfully modelled as a multi-label classification task, with a promising performance. Support vector machines as a classical machine learning method outperformed the non-contextual fastText approach. FastText with less demanding hardware resources has reached a similar performance to BERT-based models and has shown to be more suitable for explaining the predictions efficiently.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541716/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-76424-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Procedural coding presents a taxing challenge for clinicians. However, recent advances in natural language processing offer a promising avenue for developing applications that assist clinicians, thereby alleviating their administrative burdens. This study seeks to create an application capable of predicting procedure codes by analysing clinicians' operative notes, aiming to streamline their workflow and enhance efficiency. We downstreamed an existing and a native German medical BERT model in a secondary use scenario, utilizing already coded surgery notes to model the coding procedure as a multi-label classification task. In comparison to the transformer-based architecture, we were levering the non-contextual model fastText, a convolutional neural network, a support vector machine and logistic regression for a comparative analysis of possible coding performance. About 350,000 notes were used for model adaption. By considering the top five suggested procedure codes from medBERT.de, surgeryBERT.at, fastText, a convolutional neural network, a support vector machine and a logistic regression, the mean average precision achieved was 0.880, 0.867, 0.870, 0.851, 0.870 and 0.805 respectively. Support vector machines performed better for surgery reports with a sequence length greater than 512, achieving a mean average precision of 0.872 in comparison to 0.840 for fastText, 0.837 for medBERT.de and 0.820 for surgeryBERT.at. A prototypical front-end application for coding support was additionally implemented. The problem of predicting procedure codes from a given operative report can be successfully modelled as a multi-label classification task, with a promising performance. Support vector machines as a classical machine learning method outperformed the non-contextual fastText approach. FastText with less demanding hardware resources has reached a similar performance to BERT-based models and has shown to be more suitable for explaining the predictions efficiently.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.