Zeng Chen, Xiaocong Yang, Ping Wang, Shibo Yu, Lu Chen
{"title":"Biologically inspired adaptive crack network reconstruction based on slime mould algorithm.","authors":"Zeng Chen, Xiaocong Yang, Ping Wang, Shibo Yu, Lu Chen","doi":"10.1038/s41598-024-77944-z","DOIUrl":null,"url":null,"abstract":"<p><p>The dynamic crack propagation trajectories play a crucial role in enhancing our understanding of spatial mechanisms involved in crack expansion. However, visualization of internal cracks under complex crack conditions has always been a challenge. Biological networks have been honed by many cycles of evolutionary selection pressure and are likely to yield reasonable solutions to such combinatorial optimization problems. This study applied the slime mould algorithm to improve the accuracy of internal crack localization in rocks and employed Minimum spanning tree and Gaussian mixture model to construct the crack propagation trajectories. By introducing the concept of bond length, the evolution characteristics of crack levels were effectively characterized. Research results showed that this approach effectively preserves essential crack localization information while mitigating the influence of interfering parameters, providing crack characterization results that exhibit high consistency with actual fracture patterns. The curves of cumulative bond length and relative bond length over time conform to the trend of a Growth/Sigmoidal curve. The strength of the bond was correlated with the temporal process of crack propagation. This result could be helpful for analyzing crack trajectories and predicting rock stability.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542014/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-77944-z","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The dynamic crack propagation trajectories play a crucial role in enhancing our understanding of spatial mechanisms involved in crack expansion. However, visualization of internal cracks under complex crack conditions has always been a challenge. Biological networks have been honed by many cycles of evolutionary selection pressure and are likely to yield reasonable solutions to such combinatorial optimization problems. This study applied the slime mould algorithm to improve the accuracy of internal crack localization in rocks and employed Minimum spanning tree and Gaussian mixture model to construct the crack propagation trajectories. By introducing the concept of bond length, the evolution characteristics of crack levels were effectively characterized. Research results showed that this approach effectively preserves essential crack localization information while mitigating the influence of interfering parameters, providing crack characterization results that exhibit high consistency with actual fracture patterns. The curves of cumulative bond length and relative bond length over time conform to the trend of a Growth/Sigmoidal curve. The strength of the bond was correlated with the temporal process of crack propagation. This result could be helpful for analyzing crack trajectories and predicting rock stability.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.