Diaa Atta, Hanan A Wahab, M A Ibrahim, I K Battisha
{"title":"Photocatalytic degradation of methylene blue dye by ZnO nanoparticle thin films, using Sol-gel technique and UV laser irradiation.","authors":"Diaa Atta, Hanan A Wahab, M A Ibrahim, I K Battisha","doi":"10.1038/s41598-024-76938-1","DOIUrl":null,"url":null,"abstract":"<p><p>The focus of the current work is the study of the effect of the photo-catalytic activity of ZnO nanoparticles. The photocatalytic destruction of methylene blue dye, a common water contaminant, was used to assess the photocatalytic efficiency of the ZnO nanoparticles from its aqueous solution by using ZnO nanoparticles thin film under UV light and laser irradiation. Sol-gel methods prepared ZnO nanoparticle thin films. X-ray diffraction and a field-emitted scanning electron microscope were utilized to examine the structure of the produced ZnO nanoparticles. An extended characterization by laser-based fluorescence and UV-visible spectroscopic techniques. The effects of operational parameters such as photo-catalyst load and contact time on photocatalytic degradation of methylene blue were investigated. The recent study's findings showed that irradiation with a UV laser increases with power density 25 µW/cm<sup>2</sup>, the photo-catalytic rate. The UV spectra show decay for the band at 664nm decreased and the concentration of M.B. in monomer form decayed to 26% of the original concentration in 24 h, while the band at 612 which is related to the dimer M.B. molecules was not affected. The laser irradiation did the same for monomer M.B. molecules in only 3 h, while the dimer decreased to 28% of its original concentration. The reaction mechanism has been discussed by molecular modelling. Quantum mechanical calculations at B3LYP/6-311g(d,p) level indicated that methylene blue changed from dimers to monomers in the existence of ZnO. The current results present a method for degrading M.B. not only in wastewater but also in the industrial waste scale.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541765/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-76938-1","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The focus of the current work is the study of the effect of the photo-catalytic activity of ZnO nanoparticles. The photocatalytic destruction of methylene blue dye, a common water contaminant, was used to assess the photocatalytic efficiency of the ZnO nanoparticles from its aqueous solution by using ZnO nanoparticles thin film under UV light and laser irradiation. Sol-gel methods prepared ZnO nanoparticle thin films. X-ray diffraction and a field-emitted scanning electron microscope were utilized to examine the structure of the produced ZnO nanoparticles. An extended characterization by laser-based fluorescence and UV-visible spectroscopic techniques. The effects of operational parameters such as photo-catalyst load and contact time on photocatalytic degradation of methylene blue were investigated. The recent study's findings showed that irradiation with a UV laser increases with power density 25 µW/cm2, the photo-catalytic rate. The UV spectra show decay for the band at 664nm decreased and the concentration of M.B. in monomer form decayed to 26% of the original concentration in 24 h, while the band at 612 which is related to the dimer M.B. molecules was not affected. The laser irradiation did the same for monomer M.B. molecules in only 3 h, while the dimer decreased to 28% of its original concentration. The reaction mechanism has been discussed by molecular modelling. Quantum mechanical calculations at B3LYP/6-311g(d,p) level indicated that methylene blue changed from dimers to monomers in the existence of ZnO. The current results present a method for degrading M.B. not only in wastewater but also in the industrial waste scale.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.