Mateusz Olbromski, Monika Mrozowska, Beata Smolarz, Hanna Romanowicz, Agnieszka Rusak, Aleksandra Piotrowska
{"title":"ERα status of invasive ductal breast carcinoma as a result of regulatory interactions between lysine deacetylases KAT6A and KAT6B.","authors":"Mateusz Olbromski, Monika Mrozowska, Beata Smolarz, Hanna Romanowicz, Agnieszka Rusak, Aleksandra Piotrowska","doi":"10.1038/s41598-024-78432-0","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer (BC) is the leading cause of death among cancer patients worldwide. In 2020, almost 12% of all cancers were diagnosed with BC. Therefore, it is important to search for new potential markers of cancer progression that could be helpful in cancer diagnostics and successful anti-cancer therapies. In this study, we investigated the potential role of the lysine acetyltransferases KAT6A and KAT6B in the outcome of patients with invasive breast carcinoma. The expression profiles of KAT6A/B in 495 cases of IDC and 38 cases of mastopathy (FBD) were examined by immunohistochemistry. KAT6A/B expression was also determined in the breast cancer cell lines MCF-7, BT-474, SK-BR-3, T47D, MDA-MB-231, and MDA-MB-231/BO2, as well as in the human epithelial mammary gland cell line hTERT-HME1 - ME16C, both at the mRNA and protein level. Statistical analysis of the results showed that the nuclear expression of KAT6A/B correlates with the estrogen receptor status: KAT6A<sub>NUC</sub> vs. ER r = 0.2373 and KAT6B<sub>NUC</sub> vs. ER r = 0.1496. Statistical analysis clearly showed that KAT6A cytoplasmic and nuclear expression levels were significantly higher in IDC samples than in FBD samples (IRS 5.297 ± 2.884 vs. 2.004 ± 1.072, p < 0.0001; IRS 5.133 ± 4.221 vs. 0.1665 ± 0.4024, p < 0.0001, respectively). Moreover, we noticed strong correlations between ER and PR status and the nuclear expression of KAT6A and KAT6B (nucKAT6A vs. ER, p = 0.0048; nucKAT6A vs. PR p = 0.0416; nucKAT6B vs. ER p = 0.0306; nucKAT6B vs. PR p = 0.0213). Significantly higher KAT6A and KAT6B expression was found in the ER-positive cell lines T-47D and BT-474, whereas significantly lower expression was observed in the triple-negative cell lines MDA-MB-231 and MDA-MB-231/BO2. The outcomes of small interfering RNA (siRNA)-mediated suppression of KAT6A/B genes revealed that within estrogen receptor (ER) positive and negative cell lines, MCF-7 and MDA-MB-231, attenuation of KAT6A led to concurrent attenuation of KAT6A, whereas suppression of KAT6B resulted in simultaneous attenuation of KAT6A. Furthermore, inhibition of KAT6A/B genes resulted in a reduction in estrogen receptor (ER) mRNA and protein expression levels in MCF-7 and MDA-MMB-231 cell lines. Based on our findings, the lysine acetyltransferases KAT6A and KAT6B may be involved in the progression of invasive ductal breast cancer. Further research on other types of cancer may show that KAT6A and KAT6B could serve as diagnostic and prognostic markers for these types of malignancies.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11541733/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-78432-0","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Breast cancer (BC) is the leading cause of death among cancer patients worldwide. In 2020, almost 12% of all cancers were diagnosed with BC. Therefore, it is important to search for new potential markers of cancer progression that could be helpful in cancer diagnostics and successful anti-cancer therapies. In this study, we investigated the potential role of the lysine acetyltransferases KAT6A and KAT6B in the outcome of patients with invasive breast carcinoma. The expression profiles of KAT6A/B in 495 cases of IDC and 38 cases of mastopathy (FBD) were examined by immunohistochemistry. KAT6A/B expression was also determined in the breast cancer cell lines MCF-7, BT-474, SK-BR-3, T47D, MDA-MB-231, and MDA-MB-231/BO2, as well as in the human epithelial mammary gland cell line hTERT-HME1 - ME16C, both at the mRNA and protein level. Statistical analysis of the results showed that the nuclear expression of KAT6A/B correlates with the estrogen receptor status: KAT6ANUC vs. ER r = 0.2373 and KAT6BNUC vs. ER r = 0.1496. Statistical analysis clearly showed that KAT6A cytoplasmic and nuclear expression levels were significantly higher in IDC samples than in FBD samples (IRS 5.297 ± 2.884 vs. 2.004 ± 1.072, p < 0.0001; IRS 5.133 ± 4.221 vs. 0.1665 ± 0.4024, p < 0.0001, respectively). Moreover, we noticed strong correlations between ER and PR status and the nuclear expression of KAT6A and KAT6B (nucKAT6A vs. ER, p = 0.0048; nucKAT6A vs. PR p = 0.0416; nucKAT6B vs. ER p = 0.0306; nucKAT6B vs. PR p = 0.0213). Significantly higher KAT6A and KAT6B expression was found in the ER-positive cell lines T-47D and BT-474, whereas significantly lower expression was observed in the triple-negative cell lines MDA-MB-231 and MDA-MB-231/BO2. The outcomes of small interfering RNA (siRNA)-mediated suppression of KAT6A/B genes revealed that within estrogen receptor (ER) positive and negative cell lines, MCF-7 and MDA-MB-231, attenuation of KAT6A led to concurrent attenuation of KAT6A, whereas suppression of KAT6B resulted in simultaneous attenuation of KAT6A. Furthermore, inhibition of KAT6A/B genes resulted in a reduction in estrogen receptor (ER) mRNA and protein expression levels in MCF-7 and MDA-MMB-231 cell lines. Based on our findings, the lysine acetyltransferases KAT6A and KAT6B may be involved in the progression of invasive ductal breast cancer. Further research on other types of cancer may show that KAT6A and KAT6B could serve as diagnostic and prognostic markers for these types of malignancies.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.