Controlling synthesis of defect state lignin-derived carbon and application for U(VI) removal from aqueous solution: Effects of oxygen-defect and grain-size
Haijun Chen , Jiaying Pei , Zhibin Zhang , Yanbing Sun , Nan Xu , Yan Chen , Yunhai Liu
{"title":"Controlling synthesis of defect state lignin-derived carbon and application for U(VI) removal from aqueous solution: Effects of oxygen-defect and grain-size","authors":"Haijun Chen , Jiaying Pei , Zhibin Zhang , Yanbing Sun , Nan Xu , Yan Chen , Yunhai Liu","doi":"10.1016/j.carbon.2024.119762","DOIUrl":null,"url":null,"abstract":"<div><div>Lignin has deemed to be the main polluting component of paper industry wastewater. But developing a potential strategy for utilization of lignin is a challenges problem. Lignin derived materials present potential performance for heavy metal wastewater treatment due to their unique physicochemical properties, and were found to be promising candidate materials in U(VI) removal. However, it is still lacking of a comprehensive understanding that the influences of surface oxygen-defect and grain-size on U(VI) removal processes. Here, using lignin as the raw material, combining plasma treatment technology to prepare defect states Lignin Derived Carbon (LDC), and exploring the influences of surface oxygen-defect and grain-size on their removal U(VI) process. The results indicated that with the reducing of LDC particle size (from ∼4 to ∼ 1 μm), the removal performance of U(VI) was improved. And the U(VI) removal performance of LDC was further improved by introducing of oxygen defect via H<sub>2</sub> plasma etch. The characterization analysis of defect states LDC before and after reaction with U(VI) shown that the U(VI) removal mechanism was dominated by defects site complexation. These finding provide deep insight into the recycling of industrial solid wastes lignin and improving of U(VI) removal performance via defect controlling technology.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"232 ","pages":"Article 119762"},"PeriodicalIF":10.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324009813","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lignin has deemed to be the main polluting component of paper industry wastewater. But developing a potential strategy for utilization of lignin is a challenges problem. Lignin derived materials present potential performance for heavy metal wastewater treatment due to their unique physicochemical properties, and were found to be promising candidate materials in U(VI) removal. However, it is still lacking of a comprehensive understanding that the influences of surface oxygen-defect and grain-size on U(VI) removal processes. Here, using lignin as the raw material, combining plasma treatment technology to prepare defect states Lignin Derived Carbon (LDC), and exploring the influences of surface oxygen-defect and grain-size on their removal U(VI) process. The results indicated that with the reducing of LDC particle size (from ∼4 to ∼ 1 μm), the removal performance of U(VI) was improved. And the U(VI) removal performance of LDC was further improved by introducing of oxygen defect via H2 plasma etch. The characterization analysis of defect states LDC before and after reaction with U(VI) shown that the U(VI) removal mechanism was dominated by defects site complexation. These finding provide deep insight into the recycling of industrial solid wastes lignin and improving of U(VI) removal performance via defect controlling technology.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.