High-performance biodegradable triboelectric nanogenerators using CoFe2O4 filled poly (butylene adipate-co-terephthalate)

IF 1.7 4区 工程技术 Q4 POLYMER SCIENCE International Journal of Polymer Analysis and Characterization Pub Date : 2024-10-14 DOI:10.1080/1023666X.2024.2410762
Vishnu Kadabahalli Thammannagowda , Kariyappa Gowda Guddenahalli Shivanna , Smitha Ankanahalli Shankaregowda , Prashantha Kalappa
{"title":"High-performance biodegradable triboelectric nanogenerators using CoFe2O4 filled poly (butylene adipate-co-terephthalate)","authors":"Vishnu Kadabahalli Thammannagowda ,&nbsp;Kariyappa Gowda Guddenahalli Shivanna ,&nbsp;Smitha Ankanahalli Shankaregowda ,&nbsp;Prashantha Kalappa","doi":"10.1080/1023666X.2024.2410762","DOIUrl":null,"url":null,"abstract":"<div><div>The hunt for sustainable and efficient energy harvesting and storage devices has driven significant interest in triboelectric nanogenerators (TENGs) as potential alternatives to traditional batteries for powering electronic devices. However, the development of biodegradable TENGs remains a formidable challenge. This study presents the preparation of a tribopositive material entirely composed of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) polymer enhanced with CoFe<sub>2</sub>O<sub>4</sub> (CF) nanoparticles. The CF nanoparticles, synthesized via the combustion method, were incorporated into the PBAT matrix through solvent casting to form films with varied filler content (0.2, 0.4, 0.6, 0.8, and 1 g). The CF nanoparticles structural, surface, and electrical properties were characterized using XRD and FTIR spectroscopy. At the same time, the morphology of the nanomaterials and their composites was analyzed by scanning electron microscopy. Specifically, the 0.8 g PBAT-CF TENG demonstrated superior performance, achieving an output voltage of 45.45 V and a current of 4.5 µA. Subsequent electrical studies, including charging commercial capacitors (1.0 to 47 μF) and powering LEDs and calculators, underscored the device’s efficiency. The PBAT-CF TENG also effectively generated voltage and current signals from physical activities like walking and jumping. This innovative approach highlights the potential for biodegradable, high-performing, self-powered flexible electronics, and wearable devices, paving the way for sustainable technological advancements.</div></div>","PeriodicalId":14236,"journal":{"name":"International Journal of Polymer Analysis and Characterization","volume":"29 8","pages":"Pages 685-698"},"PeriodicalIF":1.7000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymer Analysis and Characterization","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1023666X24000465","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The hunt for sustainable and efficient energy harvesting and storage devices has driven significant interest in triboelectric nanogenerators (TENGs) as potential alternatives to traditional batteries for powering electronic devices. However, the development of biodegradable TENGs remains a formidable challenge. This study presents the preparation of a tribopositive material entirely composed of biodegradable poly(butylene adipate-co-terephthalate) (PBAT) polymer enhanced with CoFe2O4 (CF) nanoparticles. The CF nanoparticles, synthesized via the combustion method, were incorporated into the PBAT matrix through solvent casting to form films with varied filler content (0.2, 0.4, 0.6, 0.8, and 1 g). The CF nanoparticles structural, surface, and electrical properties were characterized using XRD and FTIR spectroscopy. At the same time, the morphology of the nanomaterials and their composites was analyzed by scanning electron microscopy. Specifically, the 0.8 g PBAT-CF TENG demonstrated superior performance, achieving an output voltage of 45.45 V and a current of 4.5 µA. Subsequent electrical studies, including charging commercial capacitors (1.0 to 47 μF) and powering LEDs and calculators, underscored the device’s efficiency. The PBAT-CF TENG also effectively generated voltage and current signals from physical activities like walking and jumping. This innovative approach highlights the potential for biodegradable, high-performing, self-powered flexible electronics, and wearable devices, paving the way for sustainable technological advancements.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 CoFe2O4 填充聚(己二酸丁二醇酯-对苯二甲酸乙二醇酯)的高性能可生物降解三电纳米发电机
对可持续和高效能源采集和存储设备的追求,促使人们对三电纳米发电机(TENGs)产生了浓厚的兴趣,并将其作为传统电池的潜在替代品,为电子设备供电。然而,开发可生物降解的 TENGs 仍然是一项艰巨的挑战。本研究介绍了一种完全由可生物降解的聚己二酸丁二醇酯(PBAT)聚合物和 CoFe2O4(CF)纳米颗粒组成的摩擦正极材料的制备方法。通过燃烧法合成的 CF 纳米粒子通过溶剂浇铸法加入到 PBAT 基质中,形成不同填料含量(0.2、0.4、0.6、0.8 和 1 克)的薄膜。利用 XRD 和傅立叶变换红外光谱对 CF 纳米粒子的结构、表面和电学特性进行了表征。同时,利用扫描电子显微镜分析了纳米材料及其复合材料的形态。具体而言,0.8 克 PBAT-CF TENG 表现出卓越的性能,输出电压达到 45.45 V,电流为 4.5 µA。随后进行的电学研究,包括为商用电容器(1.0 至 47 μF)充电以及为 LED 和计算器供电,都凸显了该器件的效率。PBAT-CF TENG 还能有效地从步行和跳跃等身体活动中产生电压和电流信号。这种创新方法凸显了可生物降解、高性能、自供电柔性电子器件和可穿戴设备的潜力,为可持续技术进步铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
37
审稿时长
1.6 months
期刊介绍: The scope of the journal is to publish original contributions and reviews on studies, methodologies, instrumentation, and applications involving the analysis and characterization of polymers and polymeric-based materials, including synthetic polymers, blends, composites, fibers, coatings, supramolecular structures, polysaccharides, and biopolymers. The Journal will accept papers and review articles on the following topics and research areas involving fundamental and applied studies of polymer analysis and characterization: Characterization and analysis of new and existing polymers and polymeric-based materials. Design and evaluation of analytical instrumentation and physical testing equipment. Determination of molecular weight, size, conformation, branching, cross-linking, chemical structure, and sequence distribution. Using separation, spectroscopic, and scattering techniques. Surface characterization of polymeric materials. Measurement of solution and bulk properties and behavior of polymers. Studies involving structure-property-processing relationships, and polymer aging. Analysis of oligomeric materials. Analysis of polymer additives and decomposition products.
期刊最新文献
Synthesis, rheological and thermal studies of Gum ghatti-cl-poly(acrylic acid) hydrogels containing CoFe2O4 nanoparticles Preparation and characterization of fumed silica added PMMA denture base materials High-performance biodegradable triboelectric nanogenerators using CoFe2O4 filled poly (butylene adipate-co-terephthalate) Optimization of Yucca filamentosa fiber based graft copolymer through response surface methodology and evaluation of physico-chemical properties Mechanical, Thermal, and Water Absorption Behavior of Ash Gourd (Benincasa Hispida) Peel Particles Filled Epoxy Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1