Ang Zhang , Minghang Yang , Lang Qin , Jing Cheng , Yuchen Tang , Jinglian Du , Wenbo Yu , Zhihua Dong , Feng Liu , Bin Jiang , Fusheng Pan
{"title":"Numerical study of magnesium dendrite microstructure under convection: Change of dendrite symmetry","authors":"Ang Zhang , Minghang Yang , Lang Qin , Jing Cheng , Yuchen Tang , Jinglian Du , Wenbo Yu , Zhihua Dong , Feng Liu , Bin Jiang , Fusheng Pan","doi":"10.1016/j.camwa.2024.10.038","DOIUrl":null,"url":null,"abstract":"<div><div>Besides diffusion and capillary, convection which is unavoidable under terrestrial condition has remarkable effects on the microstructure evolution during solidification. In this study, a phase-field lattice-Boltzmann model, accelerated by state-of-the-art parallel-adaptive mesh refinement algorithm, is solved to investigate the morphological evolution of the Mg-Gd dendrite under convection. The lengths of the dendrite primary arms are quantified to analyze the asymmetric dendrite patterns under convection. The effects of the multiple factors including the orientation angle, the flow intensity, and the undercooling are elucidated, and the relation between the length ratios and the three independent factors is established through multiple regression analysis. The upstream-downstream arm length difference and the included angle between the primary arms are characterized to illustrate the effect of convection on the evolution of the Mg-Gd dendrite. The 3D morphological selection, together with algorithm performance tests, is further discussed to elucidate the change of morphological symmetry under different growth conditions and to demonstrate the robustness of the numerical scheme. Deep understanding of the synergy between convection-induced solute transport and undercooling-driven growth, which largely determines the morphological selection, can assist guidance for the prediction and control of the magnesium alloy microstructures.</div></div>","PeriodicalId":55218,"journal":{"name":"Computers & Mathematics with Applications","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Mathematics with Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898122124004875","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Besides diffusion and capillary, convection which is unavoidable under terrestrial condition has remarkable effects on the microstructure evolution during solidification. In this study, a phase-field lattice-Boltzmann model, accelerated by state-of-the-art parallel-adaptive mesh refinement algorithm, is solved to investigate the morphological evolution of the Mg-Gd dendrite under convection. The lengths of the dendrite primary arms are quantified to analyze the asymmetric dendrite patterns under convection. The effects of the multiple factors including the orientation angle, the flow intensity, and the undercooling are elucidated, and the relation between the length ratios and the three independent factors is established through multiple regression analysis. The upstream-downstream arm length difference and the included angle between the primary arms are characterized to illustrate the effect of convection on the evolution of the Mg-Gd dendrite. The 3D morphological selection, together with algorithm performance tests, is further discussed to elucidate the change of morphological symmetry under different growth conditions and to demonstrate the robustness of the numerical scheme. Deep understanding of the synergy between convection-induced solute transport and undercooling-driven growth, which largely determines the morphological selection, can assist guidance for the prediction and control of the magnesium alloy microstructures.
期刊介绍:
Computers & Mathematics with Applications provides a medium of exchange for those engaged in fields contributing to building successful simulations for science and engineering using Partial Differential Equations (PDEs).