{"title":"Geometrically nonlinear topology optimization of porous structures","authors":"Yongfeng Zheng, Rongna Cai, Jiawei He, Zihao Chen","doi":"10.1016/j.enganabound.2024.106014","DOIUrl":null,"url":null,"abstract":"<div><div>Porous structures are extensively used in engineering, and current designs of porous structures are constructed based on linear assumptions. In engineering, deformation cannot be ignored, so it is necessary to consider the effect of geometric nonlinearity in structural design. For the first time, this paper performs the geometrically nonlinear topology optimization of porous structures. This paper presents the theory of geometric nonlinear analysis, the bi-directional evolutionary method is used to search for the topological configurations of porous structures, the number of structural holes is determined by the number of periodicities. Furthermore, the optimization equation, sensitivity analysis, and optimization process are provided in detail. Lastly, four numerical examples are investigated to discuss the influence of geometric nonlinearity on the design of porous structures, such as comparisons between geometric nonlinear and linear design, the ability of geometric nonlinear design to resist cracks, changes in load amplitude and position and 3D porous designs. The conclusions drawn can provide strong reference for the design of high-performance porous structures.</div></div>","PeriodicalId":51039,"journal":{"name":"Engineering Analysis with Boundary Elements","volume":"169 ","pages":"Article 106014"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Analysis with Boundary Elements","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955799724004879","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Porous structures are extensively used in engineering, and current designs of porous structures are constructed based on linear assumptions. In engineering, deformation cannot be ignored, so it is necessary to consider the effect of geometric nonlinearity in structural design. For the first time, this paper performs the geometrically nonlinear topology optimization of porous structures. This paper presents the theory of geometric nonlinear analysis, the bi-directional evolutionary method is used to search for the topological configurations of porous structures, the number of structural holes is determined by the number of periodicities. Furthermore, the optimization equation, sensitivity analysis, and optimization process are provided in detail. Lastly, four numerical examples are investigated to discuss the influence of geometric nonlinearity on the design of porous structures, such as comparisons between geometric nonlinear and linear design, the ability of geometric nonlinear design to resist cracks, changes in load amplitude and position and 3D porous designs. The conclusions drawn can provide strong reference for the design of high-performance porous structures.
期刊介绍:
This journal is specifically dedicated to the dissemination of the latest developments of new engineering analysis techniques using boundary elements and other mesh reduction methods.
Boundary element (BEM) and mesh reduction methods (MRM) are very active areas of research with the techniques being applied to solve increasingly complex problems. The journal stresses the importance of these applications as well as their computational aspects, reliability and robustness.
The main criteria for publication will be the originality of the work being reported, its potential usefulness and applications of the methods to new fields.
In addition to regular issues, the journal publishes a series of special issues dealing with specific areas of current research.
The journal has, for many years, provided a channel of communication between academics and industrial researchers working in mesh reduction methods
Fields Covered:
• Boundary Element Methods (BEM)
• Mesh Reduction Methods (MRM)
• Meshless Methods
• Integral Equations
• Applications of BEM/MRM in Engineering
• Numerical Methods related to BEM/MRM
• Computational Techniques
• Combination of Different Methods
• Advanced Formulations.