Kwang-Mo Kang , Seok-Han Lee , Sang-Youn Kim , Yoon-Chae Nah
{"title":"Fabrication of patterned TiO2 nanotube layers utilizing a 3D printer platform and their electrochromic properties","authors":"Kwang-Mo Kang , Seok-Han Lee , Sang-Youn Kim , Yoon-Chae Nah","doi":"10.1016/j.elecom.2024.107833","DOIUrl":null,"url":null,"abstract":"<div><div>Anodization enables nano-structure fabrication through electrochemical parameter control. While various approaches exist for creating localized or patterned oxide layers, many are complex and time-consuming. This study adopted a commercial 3D printer for high-speed (1 mm/s) anodization, forming TiO<sub>2</sub> nanotube layers on Ti substrates in G-code-designed patterns. Comprehensive characterization using XRD, SEM, XPS, and simulated electric field distribution analysis revealed well-defined nanostructures and provided insights into the formation mechanism. Furthermore, viologen-anchored TiO<sub>2</sub> showed significantly improved electrochromic performance compared to pristine TiO<sub>2</sub>, with a higher reflectance difference (46.2% vs. 6.85%). This 3D printing-anodization hybrid method offers a rapid approach to fabricating patterned TiO<sub>2</sub> nanostructures, showing promise for electrochromic devices with enhanced optical modulation capabilities.</div></div>","PeriodicalId":304,"journal":{"name":"Electrochemistry Communications","volume":"169 ","pages":"Article 107833"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochemistry Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1388248124001760","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
Abstract
Anodization enables nano-structure fabrication through electrochemical parameter control. While various approaches exist for creating localized or patterned oxide layers, many are complex and time-consuming. This study adopted a commercial 3D printer for high-speed (1 mm/s) anodization, forming TiO2 nanotube layers on Ti substrates in G-code-designed patterns. Comprehensive characterization using XRD, SEM, XPS, and simulated electric field distribution analysis revealed well-defined nanostructures and provided insights into the formation mechanism. Furthermore, viologen-anchored TiO2 showed significantly improved electrochromic performance compared to pristine TiO2, with a higher reflectance difference (46.2% vs. 6.85%). This 3D printing-anodization hybrid method offers a rapid approach to fabricating patterned TiO2 nanostructures, showing promise for electrochromic devices with enhanced optical modulation capabilities.
期刊介绍:
Electrochemistry Communications is an open access journal providing fast dissemination of short communications, full communications and mini reviews covering the whole field of electrochemistry which merit urgent publication. Short communications are limited to a maximum of 20,000 characters (including spaces) while full communications and mini reviews are limited to 25,000 characters (including spaces). Supplementary information is permitted for full communications and mini reviews but not for short communications. We aim to be the fastest journal in electrochemistry for these types of papers.