A neural implementation of cognitive reserve: Insights from a longitudinal fMRI study of set-switching in aging

IF 3.7 3区 医学 Q2 GERIATRICS & GERONTOLOGY Neurobiology of Aging Pub Date : 2024-10-31 DOI:10.1016/j.neurobiolaging.2024.10.008
Fatemeh Hasanzadeh , Christian Habeck , Yunglin Gazes , Yaakov Stern
{"title":"A neural implementation of cognitive reserve: Insights from a longitudinal fMRI study of set-switching in aging","authors":"Fatemeh Hasanzadeh ,&nbsp;Christian Habeck ,&nbsp;Yunglin Gazes ,&nbsp;Yaakov Stern","doi":"10.1016/j.neurobiolaging.2024.10.008","DOIUrl":null,"url":null,"abstract":"<div><div>Aging is often accompanied by changes in brain structure and executive functions, particularly in tasks involving cognitive flexibility, such as task-switching. However, substantial individual differences in the degree of cognitive impairment indicate that some individuals can cope with brain changes more effectively than others, suggesting higher cognitive reserve (CR). This study identified a neural basis for CR by examining the longitudinal relationship between task-related brain activation, structural brain changes, and changes in cognitive performance during an executive task-switching paradigm including single and dual conditions. Fifty-two older individuals were assessed at baseline and followed up after five years. Structural brain changes related to task-switching performance were analyzed using elastic net regression. Task-related functional brain activation was measured using ordinal trends canonical variate analysis (OrT CVA), capturing patterns of activation increasing from single to dual conditions. A differential task-related expression score (dOrT) was calculated as the difference in pattern expression scores between single and dual conditions at baseline. A linear regression model tested whether dOrT moderated the impact of brain changes on changes in switch cost over five years. Results showed a significant interaction between changes in brain structure and dOrT activation on switch cost change, indicating a moderation effect of task-related activation. Higher dOrT buffered the impact of brain structural decline on switch costs, enabling older adults to better cope with age-related brain structural changes and preserve cognitive flexibility. These findings suggest that these task-related activation patterns represent a neural basis for CR.</div></div>","PeriodicalId":19110,"journal":{"name":"Neurobiology of Aging","volume":"145 ","pages":"Pages 76-83"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurobiology of Aging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0197458024001842","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GERIATRICS & GERONTOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aging is often accompanied by changes in brain structure and executive functions, particularly in tasks involving cognitive flexibility, such as task-switching. However, substantial individual differences in the degree of cognitive impairment indicate that some individuals can cope with brain changes more effectively than others, suggesting higher cognitive reserve (CR). This study identified a neural basis for CR by examining the longitudinal relationship between task-related brain activation, structural brain changes, and changes in cognitive performance during an executive task-switching paradigm including single and dual conditions. Fifty-two older individuals were assessed at baseline and followed up after five years. Structural brain changes related to task-switching performance were analyzed using elastic net regression. Task-related functional brain activation was measured using ordinal trends canonical variate analysis (OrT CVA), capturing patterns of activation increasing from single to dual conditions. A differential task-related expression score (dOrT) was calculated as the difference in pattern expression scores between single and dual conditions at baseline. A linear regression model tested whether dOrT moderated the impact of brain changes on changes in switch cost over five years. Results showed a significant interaction between changes in brain structure and dOrT activation on switch cost change, indicating a moderation effect of task-related activation. Higher dOrT buffered the impact of brain structural decline on switch costs, enabling older adults to better cope with age-related brain structural changes and preserve cognitive flexibility. These findings suggest that these task-related activation patterns represent a neural basis for CR.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
认知储备的神经实现:对衰老过程中集合切换的纵向 fMRI 研究的启示
衰老往往伴随着大脑结构和执行功能的变化,特别是在涉及认知灵活性的任务中,如任务转换。然而,认知障碍程度的巨大个体差异表明,有些人比其他人能更有效地应对大脑的变化,这表明他们具有较高的认知储备(CR)。本研究通过研究任务相关的大脑激活、大脑结构变化以及在执行任务切换范式(包括单一和双重条件)中认知表现的变化之间的纵向关系,确定了认知储备的神经基础。52名老年人接受了基线评估和五年后的随访。使用弹性网回归分析了与任务切换表现相关的大脑结构变化。与任务相关的大脑功能激活采用顺序趋势典型变异分析(OrT CVA)进行测量,捕捉从单一条件到双重条件的激活增加模式。与任务相关的差异表达得分(dOrT)被计算为基线时单一和双重条件下模式表达得分的差异。线性回归模型测试了 dOrT 是否会调节大脑变化对五年内转换成本变化的影响。结果显示,大脑结构变化和 dOrT 激活对转换成本变化的影响存在明显的交互作用,这表明任务相关激活具有调节作用。较高的dOrT可以缓冲大脑结构衰退对转换成本的影响,使老年人能够更好地应对与年龄相关的大脑结构变化,保持认知灵活性。这些发现表明,这些与任务相关的激活模式代表了 CR 的神经基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurobiology of Aging
Neurobiology of Aging 医学-老年医学
CiteScore
8.40
自引率
2.40%
发文量
225
审稿时长
67 days
期刊介绍: Neurobiology of Aging publishes the results of studies in behavior, biochemistry, cell biology, endocrinology, molecular biology, morphology, neurology, neuropathology, pharmacology, physiology and protein chemistry in which the primary emphasis involves mechanisms of nervous system changes with age or diseases associated with age. Reviews and primary research articles are included, occasionally accompanied by open peer commentary. Letters to the Editor and brief communications are also acceptable. Brief reports of highly time-sensitive material are usually treated as rapid communications in which case editorial review is completed within six weeks and publication scheduled for the next available issue.
期刊最新文献
Cerebral white matter hyperintensity volumes: Normative age- and sex-specific values from 15 population-based cohorts comprising 14,876 individuals Contents Editorial Advisory Board Cross-sectional and longitudinal relationships among blood-brain barrier disruption, Alzheimer's disease biomarkers, and cognition in cognitively normal older adults Effects of age and dietary methionine restriction on cognitive and behavioural phenotypes in the rTg4510 mouse model of frontotemporal dementia
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1