{"title":"A three-way decision combining multi-granularity variable precision fuzzy rough set and TOPSIS method","authors":"Chengzhao Jia, Lingqiang Li, Xinru Li","doi":"10.1016/j.ijar.2024.109318","DOIUrl":null,"url":null,"abstract":"<div><div>This study proposed an innovative fuzzy rough set model to address multi-attribute decision-making problems. Initially, we introduced a novel model of multi-granularity variable precision fuzzy rough sets, which included three foundational models. This model was demonstrated to possess favorable algebraic and topological properties, and particularly noteworthy the comparable property. Subsequently, by integrating the novel model with the TOPSIS method, a novel three-way decision model was proposed. Within this framework, three fundamental models of multi-granularity variable precision fuzzy rough sets were applied in three methods to construct relative loss functions. This resulted in a three-way decision model with three distinct strategies. Finally, we implemented the proposed three-way decision model for risk detection in maternal women. Several experiments and comparisons were conducted to validate the effectiveness, stability, and reliability of our proposed approach. The experimental results indicated that the proposed method accurately classified and ranked maternal women. Overall, our approach offered multiple strategies and fault tolerance and was found to be effective for a large amount of data.</div></div>","PeriodicalId":13842,"journal":{"name":"International Journal of Approximate Reasoning","volume":"176 ","pages":"Article 109318"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Approximate Reasoning","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888613X24002056","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
This study proposed an innovative fuzzy rough set model to address multi-attribute decision-making problems. Initially, we introduced a novel model of multi-granularity variable precision fuzzy rough sets, which included three foundational models. This model was demonstrated to possess favorable algebraic and topological properties, and particularly noteworthy the comparable property. Subsequently, by integrating the novel model with the TOPSIS method, a novel three-way decision model was proposed. Within this framework, three fundamental models of multi-granularity variable precision fuzzy rough sets were applied in three methods to construct relative loss functions. This resulted in a three-way decision model with three distinct strategies. Finally, we implemented the proposed three-way decision model for risk detection in maternal women. Several experiments and comparisons were conducted to validate the effectiveness, stability, and reliability of our proposed approach. The experimental results indicated that the proposed method accurately classified and ranked maternal women. Overall, our approach offered multiple strategies and fault tolerance and was found to be effective for a large amount of data.
期刊介绍:
The International Journal of Approximate Reasoning is intended to serve as a forum for the treatment of imprecision and uncertainty in Artificial and Computational Intelligence, covering both the foundations of uncertainty theories, and the design of intelligent systems for scientific and engineering applications. It publishes high-quality research papers describing theoretical developments or innovative applications, as well as review articles on topics of general interest.
Relevant topics include, but are not limited to, probabilistic reasoning and Bayesian networks, imprecise probabilities, random sets, belief functions (Dempster-Shafer theory), possibility theory, fuzzy sets, rough sets, decision theory, non-additive measures and integrals, qualitative reasoning about uncertainty, comparative probability orderings, game-theoretic probability, default reasoning, nonstandard logics, argumentation systems, inconsistency tolerant reasoning, elicitation techniques, philosophical foundations and psychological models of uncertain reasoning.
Domains of application for uncertain reasoning systems include risk analysis and assessment, information retrieval and database design, information fusion, machine learning, data and web mining, computer vision, image and signal processing, intelligent data analysis, statistics, multi-agent systems, etc.