Band gap effect of TiO2 on supported Ru single-atom catalysts for CO2 methanation by DFT calculations

IF 3.9 2区 化学 Q2 CHEMISTRY, PHYSICAL Molecular Catalysis Pub Date : 2024-11-05 DOI:10.1016/j.mcat.2024.114665
{"title":"Band gap effect of TiO2 on supported Ru single-atom catalysts for CO2 methanation by DFT calculations","authors":"","doi":"10.1016/j.mcat.2024.114665","DOIUrl":null,"url":null,"abstract":"<div><div>The influence of TiO<sub>2</sub> band gap on structure and reactivity of the supported single ruthenium (Ru<sub>1</sub>) atom was studied by density functional theory calculations, utilizing Ru<sub>1</sub>/2L-TiO<sub>2</sub> and Ru<sub>1</sub>/3L-TiO<sub>2</sub> as model catalysts for CO<sub>2</sub> methanation. The supports have band gaps of 2.39 eV and 1.48 eV, respectively. The band gap plays a significant role in electronic metal-support interactions (EMSIs) and the position of the d-band center of the Ru<sub>1</sub> on the TiO<sub>2</sub>. The Ru<sub>1</sub>/3L-TiO<sub>2</sub>, the Ru<sub>1</sub> catalyst supported on the 3L-TiO<sub>2</sub> with a narrower band gap, shows enhanced EMSIs and a d-band center that is positioned farther from Fermi level, leading to lower charge density on the Ru<sub>1</sub> and weaker adsorption of H<sub>2</sub>, CO<sub>2</sub>, and CO compared to the Ru<sub>1</sub>/2L-TiO<sub>2</sub>. CO<sub>2</sub> methanation followed CO pathway, with the hydrogenation of CO* to HCO* identified as the rate-determining step on the Ru<sub>1</sub>/nL-TiO<sub>2</sub>. The Ru<sub>1</sub> catalyst supported on TiO<sub>2</sub> with a narrower band gap is more favorable kinetically and thermodynamically for CO<sub>2</sub> methanation, despite the band gap not altering the reaction pathway. Enhanced hydrogen mobility and a pronounced promotional effect of hydrogen on CO adsorption, due to the narrower band gap support, are key factors facilitating the easier hydrogenation of CO* on the Ru<sub>1</sub>/3L-TiO<sub>2</sub>.</div></div>","PeriodicalId":393,"journal":{"name":"Molecular Catalysis","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468823124008472","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The influence of TiO2 band gap on structure and reactivity of the supported single ruthenium (Ru1) atom was studied by density functional theory calculations, utilizing Ru1/2L-TiO2 and Ru1/3L-TiO2 as model catalysts for CO2 methanation. The supports have band gaps of 2.39 eV and 1.48 eV, respectively. The band gap plays a significant role in electronic metal-support interactions (EMSIs) and the position of the d-band center of the Ru1 on the TiO2. The Ru1/3L-TiO2, the Ru1 catalyst supported on the 3L-TiO2 with a narrower band gap, shows enhanced EMSIs and a d-band center that is positioned farther from Fermi level, leading to lower charge density on the Ru1 and weaker adsorption of H2, CO2, and CO compared to the Ru1/2L-TiO2. CO2 methanation followed CO pathway, with the hydrogenation of CO* to HCO* identified as the rate-determining step on the Ru1/nL-TiO2. The Ru1 catalyst supported on TiO2 with a narrower band gap is more favorable kinetically and thermodynamically for CO2 methanation, despite the band gap not altering the reaction pathway. Enhanced hydrogen mobility and a pronounced promotional effect of hydrogen on CO adsorption, due to the narrower band gap support, are key factors facilitating the easier hydrogenation of CO* on the Ru1/3L-TiO2.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过 DFT 计算确定 TiO2 对支撑 Ru 单原子催化剂 CO2 甲烷化的带隙效应
利用 Ru1/2L-TiO2 和 Ru1/3L-TiO2 作为二氧化碳甲烷化的模型催化剂,通过密度泛函理论计算研究了 TiO2 带隙对支撑单钌 (Ru1) 原子的结构和反应活性的影响。这两种载体的带隙分别为 2.39 eV 和 1.48 eV。带隙在电子金属-载体相互作用(EMSIs)和 TiO2 上 Ru1 的 d 带中心位置中起着重要作用。与 Ru1/2L-TiO2 相比,Ru1/3L-TiO2(Ru1 支撑在带隙较窄的 3L-TiO2 上的 Ru1 催化剂)显示出更强的电子金属-支撑相互作用(EMSIs)和更远离费米级的 d 带中心位置,导致 Ru1 上的电荷密度更低,对 H2、CO2 和 CO 的吸附更弱。CO2 甲烷化遵循 CO 路径,在 Ru1/nL-TiO2 上,CO* 加氢为 HCO* 是决定速率的步骤。尽管带隙不会改变反应途径,但在带隙较窄的 TiO2 上支撑的 Ru1 催化剂在动力学和热力学上更有利于 CO2 甲烷化。较窄的带隙支撑增强了氢的流动性,氢对 CO 的吸附具有明显的促进作用,这些都是 Ru1/3L-TiO2 上 CO* 更容易加氢的关键因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Catalysis
Molecular Catalysis Chemical Engineering-Process Chemistry and Technology
CiteScore
6.90
自引率
10.90%
发文量
700
审稿时长
40 days
期刊介绍: Molecular Catalysis publishes full papers that are original, rigorous, and scholarly contributions examining the molecular and atomic aspects of catalytic activation and reaction mechanisms. The fields covered are: Heterogeneous catalysis including immobilized molecular catalysts Homogeneous catalysis including organocatalysis, organometallic catalysis and biocatalysis Photo- and electrochemistry Theoretical aspects of catalysis analyzed by computational methods
期刊最新文献
F-modified Cu/electrolyte interface boosts CO2 electroreduction into C2H4 and C2H5OH products via an alternative CC coupling mechanism Cu3Pt1 alloys confined by penta-coordinate Al3+ on Al2O3 realize CO oxidation at room temperature Optimizing reverse water gas shift catalysis: Minimizing metal loading and enhancing performance with Pt/ZrO2 catalysts through Rh incorporation Band gap effect of TiO2 on supported Ru single-atom catalysts for CO2 methanation by DFT calculations Molecular complex inspired design of an efficient copper(II)-containing robust porous polymers for electrochemical water oxidation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1