Error estimates for the robust α-stable central limit theorem under sublinear expectation by a discrete approximation method

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-11-05 DOI:10.1016/j.jmaa.2024.129028
Lianzi Jiang
{"title":"Error estimates for the robust α-stable central limit theorem under sublinear expectation by a discrete approximation method","authors":"Lianzi Jiang","doi":"10.1016/j.jmaa.2024.129028","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, we develop a numerical method to study the error estimates of the <em>α</em>-stable central limit theorem under sublinear expectation with <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span>, whose limit distribution can be characterized by a fully nonlinear integro-differential equation (PIDE). Based on the sequence of independent random variables, we propose a discrete approximation scheme for the fully nonlinear PIDE. With the help of the nonlinear stochastic analysis techniques and numerical analysis tools, we establish the error bounds for the discrete approximation scheme, which in turn provides a general error bound for the robust <em>α</em>-stable central limit theorem, including the integrable case <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></math></span> as well as the non-integrable case <span><math><mi>α</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>]</mo></math></span>. Finally, we provide some concrete examples to illustrate our main results and derive the precise convergence rates.</div></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24009508","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we develop a numerical method to study the error estimates of the α-stable central limit theorem under sublinear expectation with α(0,2), whose limit distribution can be characterized by a fully nonlinear integro-differential equation (PIDE). Based on the sequence of independent random variables, we propose a discrete approximation scheme for the fully nonlinear PIDE. With the help of the nonlinear stochastic analysis techniques and numerical analysis tools, we establish the error bounds for the discrete approximation scheme, which in turn provides a general error bound for the robust α-stable central limit theorem, including the integrable case α(1,2) as well as the non-integrable case α(0,1]. Finally, we provide some concrete examples to illustrate our main results and derive the precise convergence rates.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用离散逼近法估计亚线性期望下稳健α稳定中心极限定理的误差
在这项工作中,我们开发了一种数值方法来研究α∈(0,2)亚线性期望下的α稳定中心极限定理的误差估计,其极限分布可以用全非线性积分微分方程(PIDE)来表征。基于独立随机变量序列,我们提出了全非线性 PIDE 的离散逼近方案。在非线性随机分析技术和数值分析工具的帮助下,我们建立了离散近似方案的误差边界,进而为鲁棒性 α 稳定中心极限定理提供了一般误差边界,包括可整定情况 α∈(1,2) 和不可整定情况 α∈(0,1]。最后,我们提供一些具体例子来说明我们的主要结果,并推导出精确的收敛率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1