Stochastic H2/H∞ off-policy reinforcement learning tracking control for linear discrete-time systems with multiplicative noises

IF 3.7 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS Journal of The Franklin Institute-engineering and Applied Mathematics Pub Date : 2024-10-28 DOI:10.1016/j.jfranklin.2024.107349
Yubo Yin , Shixian Luo , Feiqi Deng
{"title":"Stochastic H2/H∞ off-policy reinforcement learning tracking control for linear discrete-time systems with multiplicative noises","authors":"Yubo Yin ,&nbsp;Shixian Luo ,&nbsp;Feiqi Deng","doi":"10.1016/j.jfranklin.2024.107349","DOIUrl":null,"url":null,"abstract":"<div><div>This paper focuses on an infinite horizon mixed <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></mrow></math></span> model-free optimal tracking control problem for linear discrete-time stochastic systems with multiplicative noises. A model-based algorithm for mixed <span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>/</mo><msub><mrow><mi>H</mi></mrow><mrow><mi>∞</mi></mrow></msub></mrow></math></span> control of the systems is first proposed to derive the optimal tracking control gain. Then, an off-policy reinforcement learning (RL) algorithm is proposed to solve the stochastic algebraic Riccati equation (SARE) online by collecting a set of sample-path measurement data along the system trajectory. It is further proven that the off-policy RL algorithm is equivalent to the model-based algorithm, and the off-policy RL algorithm not only dose not need to specify external disturbances but also ensures that the probing noise does not bias the algorithm’s convergence. The effectiveness of the proposed control scheme is verified by using a cart-inverted pendulum system.</div></div>","PeriodicalId":17283,"journal":{"name":"Journal of The Franklin Institute-engineering and Applied Mathematics","volume":"362 1","pages":"Article 107349"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Franklin Institute-engineering and Applied Mathematics","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016003224007701","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on an infinite horizon mixed H2/H model-free optimal tracking control problem for linear discrete-time stochastic systems with multiplicative noises. A model-based algorithm for mixed H2/H control of the systems is first proposed to derive the optimal tracking control gain. Then, an off-policy reinforcement learning (RL) algorithm is proposed to solve the stochastic algebraic Riccati equation (SARE) online by collecting a set of sample-path measurement data along the system trajectory. It is further proven that the off-policy RL algorithm is equivalent to the model-based algorithm, and the off-policy RL algorithm not only dose not need to specify external disturbances but also ensures that the probing noise does not bias the algorithm’s convergence. The effectiveness of the proposed control scheme is verified by using a cart-inverted pendulum system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有乘法噪声的线性离散时间系统的随机 H2/H∞ 非策略强化学习跟踪控制
本文主要研究具有乘法噪声的线性离散时间随机系统的无限视界混合 H2/H∞ 无模型最优跟踪控制问题。首先提出了一种基于模型的系统混合 H2/H∞ 控制算法,从而推导出最优跟踪控制增益。然后,提出了一种非策略强化学习(RL)算法,通过沿系统轨迹收集一组样本路径测量数据,在线求解随机代数里卡提方程(SARE)。进一步证明了非策略 RL 算法等同于基于模型的算法,而且非策略 RL 算法不仅无需指定外部干扰,还能确保探测噪声不会对算法的收敛产生偏差。通过使用车式倒立摆系统验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.30
自引率
14.60%
发文量
586
审稿时长
6.9 months
期刊介绍: The Journal of The Franklin Institute has an established reputation for publishing high-quality papers in the field of engineering and applied mathematics. Its current focus is on control systems, complex networks and dynamic systems, signal processing and communications and their applications. All submitted papers are peer-reviewed. The Journal will publish original research papers and research review papers of substance. Papers and special focus issues are judged upon possible lasting value, which has been and continues to be the strength of the Journal of The Franklin Institute.
期刊最新文献
Neural network-based prescribed performance control for spacecraft formation reconfiguration with collision avoidance Fast image reconstruction method using radial harmonic Fourier moments and its application in digital watermarking Deep convolutional sparse dictionary learning for bearing fault diagnosis under variable speed condition Modified Mikhailov stability criterion for non-commensurate fractional-order neutral differential systems with delays Structural state feedback gain-scheduled tracking control based on linear parameter varying system of morphing wing UAV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1