Tianli Sun , Haonan Chen , Guosheng Hu , Cairong Zhao
{"title":"Explainability-based knowledge distillation","authors":"Tianli Sun , Haonan Chen , Guosheng Hu , Cairong Zhao","doi":"10.1016/j.patcog.2024.111095","DOIUrl":null,"url":null,"abstract":"<div><div>Knowledge distillation (KD) is a popular approach for deep model acceleration. Based on the knowledge distilled, we categorize KD methods as label-related and structure-related. The former distills the very abstract (high-level) knowledge, e.g., logits; and the latter uses the spatial (low- or medium-level feature) knowledge. However, existing KD methods are usually not explainable, i.e., we do not know what knowledge is transferred during distillation. In this work, we propose a new KD method, Explainability-based Knowledge Distillation (Exp-KD). Specifically, we propose to use class activation map (CAM) as the explainable knowledge which can effectively capture both label- and structure-related information during the distillation. We conduct extensive experiments, including image classification tasks on CIFAR-10, CIFAR-100 and ImageNet datasets, and explainability tests on ImageNet and ImageNet-Segmentation. The results show the great effectiveness and explainability of Exp-KD compared with the state-of-the-art. Code is available at <span><span>https://github.com/Blenderama/Exp-KD</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"159 ","pages":"Article 111095"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S003132032400846X","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Knowledge distillation (KD) is a popular approach for deep model acceleration. Based on the knowledge distilled, we categorize KD methods as label-related and structure-related. The former distills the very abstract (high-level) knowledge, e.g., logits; and the latter uses the spatial (low- or medium-level feature) knowledge. However, existing KD methods are usually not explainable, i.e., we do not know what knowledge is transferred during distillation. In this work, we propose a new KD method, Explainability-based Knowledge Distillation (Exp-KD). Specifically, we propose to use class activation map (CAM) as the explainable knowledge which can effectively capture both label- and structure-related information during the distillation. We conduct extensive experiments, including image classification tasks on CIFAR-10, CIFAR-100 and ImageNet datasets, and explainability tests on ImageNet and ImageNet-Segmentation. The results show the great effectiveness and explainability of Exp-KD compared with the state-of-the-art. Code is available at https://github.com/Blenderama/Exp-KD.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.