Interpretation modeling: Social grounding of sentences by reasoning over their implicit moral judgments

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Pub Date : 2024-10-28 DOI:10.1016/j.artint.2024.104234
Liesbeth Allein, Maria Mihaela Truşcǎ, Marie-Francine Moens
{"title":"Interpretation modeling: Social grounding of sentences by reasoning over their implicit moral judgments","authors":"Liesbeth Allein,&nbsp;Maria Mihaela Truşcǎ,&nbsp;Marie-Francine Moens","doi":"10.1016/j.artint.2024.104234","DOIUrl":null,"url":null,"abstract":"<div><div>The social and implicit nature of human communication ramifies readers' understandings of written sentences. Single gold-standard interpretations rarely exist, challenging conventional assumptions in natural language processing. This work introduces the interpretation modeling (IM) task which involves modeling several interpretations of a sentence's underlying semantics to unearth layers of implicit meaning. To obtain these, IM is guided by multiple annotations of social relation and common ground - in this work approximated by reader attitudes towards the author and their understanding of moral judgments subtly embedded in the sentence. We propose a number of modeling strategies that rely on one-to-one and one-to-many generation methods that take inspiration from the philosophical study of interpretation. A first-of-its-kind IM dataset is curated to support experiments and analyses. The modeling results, coupled with scrutiny of the dataset, underline the challenges of IM as conflicting and complex interpretations are socially plausible. This interplay of diverse readings is affirmed by automated and human evaluations on the generated interpretations. Finally, toxicity analyses in the generated interpretations demonstrate the importance of IM for refining filters of content and assisting content moderators in safeguarding the safety in online discourse.<span><span><sup>1</sup></span></span></div></div>","PeriodicalId":8434,"journal":{"name":"Artificial Intelligence","volume":"338 ","pages":"Article 104234"},"PeriodicalIF":5.1000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000437022400170X","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The social and implicit nature of human communication ramifies readers' understandings of written sentences. Single gold-standard interpretations rarely exist, challenging conventional assumptions in natural language processing. This work introduces the interpretation modeling (IM) task which involves modeling several interpretations of a sentence's underlying semantics to unearth layers of implicit meaning. To obtain these, IM is guided by multiple annotations of social relation and common ground - in this work approximated by reader attitudes towards the author and their understanding of moral judgments subtly embedded in the sentence. We propose a number of modeling strategies that rely on one-to-one and one-to-many generation methods that take inspiration from the philosophical study of interpretation. A first-of-its-kind IM dataset is curated to support experiments and analyses. The modeling results, coupled with scrutiny of the dataset, underline the challenges of IM as conflicting and complex interpretations are socially plausible. This interplay of diverse readings is affirmed by automated and human evaluations on the generated interpretations. Finally, toxicity analyses in the generated interpretations demonstrate the importance of IM for refining filters of content and assisting content moderators in safeguarding the safety in online discourse.1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
解释建模:通过推理句子中隐含的道德判断,使句子具有社会基础
人类交流的社会性和隐含性影响着读者对书面句子的理解。单一的黄金标准解释很少存在,这对自然语言处理中的传统假设提出了挑战。这项工作引入了释义建模(IM)任务,包括对句子的基本语义进行多种释义建模,以挖掘出多层次的隐含意义。为了获得这些解释,IM 需要以社会关系和共同点的多重注释为指导--在本研究中,这些注释近似于读者对作者的态度以及他们对句子中隐含的道德判断的理解。我们提出了一系列建模策略,这些策略依赖于一对一和一对多的生成方法,并从解释哲学研究中汲取灵感。为了支持实验和分析,我们策划了一个同类首创的 IM 数据集。建模结果以及对数据集的仔细研究,都凸显了即时信息管理所面临的挑战,因为社会上可能存在相互冲突的复杂解读。自动和人工对生成的解释进行评估,证实了不同解释之间的相互作用。最后,对生成的解释进行的毒性分析表明了即时信息在完善内容过滤和协助内容管理者保障网络言论安全方面的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence
Artificial Intelligence 工程技术-计算机:人工智能
CiteScore
11.20
自引率
1.40%
发文量
118
审稿时长
8 months
期刊介绍: The Journal of Artificial Intelligence (AIJ) welcomes papers covering a broad spectrum of AI topics, including cognition, automated reasoning, computer vision, machine learning, and more. Papers should demonstrate advancements in AI and propose innovative approaches to AI problems. Additionally, the journal accepts papers describing AI applications, focusing on how new methods enhance performance rather than reiterating conventional approaches. In addition to regular papers, AIJ also accepts Research Notes, Research Field Reviews, Position Papers, Book Reviews, and summary papers on AI challenges and competitions.
期刊最新文献
Multi-rank smart reserves: A general framework for selection and matching diversity goals Out-of-distribution detection by regaining lost clues Formal verification and synthesis of mechanisms for social choice A simple yet effective self-debiasing framework for transformer models EMOA*: A framework for search-based multi-objective path planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1