{"title":"Wavelet structure-texture-aware super-resolution for pedestrian detection","authors":"Wei-Yen Hsu , Chun-Hsiang Wu","doi":"10.1016/j.ins.2024.121612","DOIUrl":null,"url":null,"abstract":"<div><div>This study aims to tackle the challenge of detecting pedestrians in low-resolution (LR) images by using super-resolution techniques. The proposed Wavelet Structure-Texture-Aware Super-Resolution (WSTa-SR) method is a novel end-to-end solution that enlarges LR images into high-resolution ones and employs Yolov7 for detection, effectively solving the problems of low detection performance. The LR image is first decomposed into low and high-frequency sub-images with stationary wavelet transform (SWT), which are then processed by different sub-networks to more accurately distinguish pedestrian from background by emphasizing pedestrian features. Additionally, a high-to-low information delivery mechanism (H2LID mechanism) is proposed to transfer the information of high-frequency details to enhance the reconstruction of low-frequency structures. A novel loss function is also introduced that exploits wavelet decomposition properties to further enhance the network’s performance on both image structure reconstruction and pedestrian detection. Experimental results show that the proposed WSTa-SR method can effectively improve pedestrian detection.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"691 ","pages":"Article 121612"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025524015263","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This study aims to tackle the challenge of detecting pedestrians in low-resolution (LR) images by using super-resolution techniques. The proposed Wavelet Structure-Texture-Aware Super-Resolution (WSTa-SR) method is a novel end-to-end solution that enlarges LR images into high-resolution ones and employs Yolov7 for detection, effectively solving the problems of low detection performance. The LR image is first decomposed into low and high-frequency sub-images with stationary wavelet transform (SWT), which are then processed by different sub-networks to more accurately distinguish pedestrian from background by emphasizing pedestrian features. Additionally, a high-to-low information delivery mechanism (H2LID mechanism) is proposed to transfer the information of high-frequency details to enhance the reconstruction of low-frequency structures. A novel loss function is also introduced that exploits wavelet decomposition properties to further enhance the network’s performance on both image structure reconstruction and pedestrian detection. Experimental results show that the proposed WSTa-SR method can effectively improve pedestrian detection.
期刊介绍:
Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions.
Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.