{"title":"Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries","authors":"Xiongwei Zhong, Xiao Xiao, Qizhen Li, Mengtian Zhang, Zhitong Li, Leyi Gao, Biao Chen, Zhiyang Zheng, Qingjin Fu, Xingzhu Wang, Guangmin Zhou, Baomin Xu","doi":"10.1038/s41467-024-54019-1","DOIUrl":null,"url":null,"abstract":"<p>The practical application of rechargeable zinc-air batteries faces challenges stemming from inadequate bifunctional catalysts, contradictory gas-liquid-solid three-phase interfaces, and an ambiguous fundamental understanding. Herein, we propose a chameleon-like bifunctional catalyst comprising ruthenium single-atoms grafted onto nickel-iron layer double hydroxide (Ru<sub>SA</sub>-NiFe LDH). The adaptive oxidation of Ru<sub>SA</sub>-NiFe LDH to oxyhydroxide species (Ru<sub>SA</sub>-NiFeOOH) during charging exposes active sites for the oxygen evolution reaction, while reversible reduction to NiFe LDH during discharge exposes active sites for the oxygen reduction reaction. Additionally, a hierarchical air cathode featuring hydrophilic and hydrophobic layers facilitates the reversible conversion between Ru<sub>SA</sub>-NiFe LDH and Ru<sub>SA</sub>-NiFeOOH, expedites oxygen bubble desorption, and suppresses carbon corrosion. Consequently, our zinc-air batteries demonstrate a high charge/discharge capacity of 100 mAh cm<sup>−2</sup> per cycle, a voltage gap of 0.67 V, and an extended cycle life of 2400 h at 10 mA cm<sup>−2</sup>. We comprehensively elucidate the catalytic reaction thermodynamics and kinetics for the air cathode through electrode potential decoupling monitoring, oxygen bubble desorption tracking, and carbon content quantification.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"28 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54019-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The practical application of rechargeable zinc-air batteries faces challenges stemming from inadequate bifunctional catalysts, contradictory gas-liquid-solid three-phase interfaces, and an ambiguous fundamental understanding. Herein, we propose a chameleon-like bifunctional catalyst comprising ruthenium single-atoms grafted onto nickel-iron layer double hydroxide (RuSA-NiFe LDH). The adaptive oxidation of RuSA-NiFe LDH to oxyhydroxide species (RuSA-NiFeOOH) during charging exposes active sites for the oxygen evolution reaction, while reversible reduction to NiFe LDH during discharge exposes active sites for the oxygen reduction reaction. Additionally, a hierarchical air cathode featuring hydrophilic and hydrophobic layers facilitates the reversible conversion between RuSA-NiFe LDH and RuSA-NiFeOOH, expedites oxygen bubble desorption, and suppresses carbon corrosion. Consequently, our zinc-air batteries demonstrate a high charge/discharge capacity of 100 mAh cm−2 per cycle, a voltage gap of 0.67 V, and an extended cycle life of 2400 h at 10 mA cm−2. We comprehensively elucidate the catalytic reaction thermodynamics and kinetics for the air cathode through electrode potential decoupling monitoring, oxygen bubble desorption tracking, and carbon content quantification.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.