Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-11-07 DOI:10.1038/s41467-024-54019-1
Xiongwei Zhong, Xiao Xiao, Qizhen Li, Mengtian Zhang, Zhitong Li, Leyi Gao, Biao Chen, Zhiyang Zheng, Qingjin Fu, Xingzhu Wang, Guangmin Zhou, Baomin Xu
{"title":"Understanding the active site in chameleon-like bifunctional catalyst for practical rechargeable zinc-air batteries","authors":"Xiongwei Zhong, Xiao Xiao, Qizhen Li, Mengtian Zhang, Zhitong Li, Leyi Gao, Biao Chen, Zhiyang Zheng, Qingjin Fu, Xingzhu Wang, Guangmin Zhou, Baomin Xu","doi":"10.1038/s41467-024-54019-1","DOIUrl":null,"url":null,"abstract":"<p>The practical application of rechargeable zinc-air batteries faces challenges stemming from inadequate bifunctional catalysts, contradictory gas-liquid-solid three-phase interfaces, and an ambiguous fundamental understanding. Herein, we propose a chameleon-like bifunctional catalyst comprising ruthenium single-atoms grafted onto nickel-iron layer double hydroxide (Ru<sub>SA</sub>-NiFe LDH). The adaptive oxidation of Ru<sub>SA</sub>-NiFe LDH to oxyhydroxide species (Ru<sub>SA</sub>-NiFeOOH) during charging exposes active sites for the oxygen evolution reaction, while reversible reduction to NiFe LDH during discharge exposes active sites for the oxygen reduction reaction. Additionally, a hierarchical air cathode featuring hydrophilic and hydrophobic layers facilitates the reversible conversion between Ru<sub>SA</sub>-NiFe LDH and Ru<sub>SA</sub>-NiFeOOH, expedites oxygen bubble desorption, and suppresses carbon corrosion. Consequently, our zinc-air batteries demonstrate a high charge/discharge capacity of 100 mAh cm<sup>−2</sup> per cycle, a voltage gap of 0.67 V, and an extended cycle life of 2400 h at 10 mA cm<sup>−2</sup>. We comprehensively elucidate the catalytic reaction thermodynamics and kinetics for the air cathode through electrode potential decoupling monitoring, oxygen bubble desorption tracking, and carbon content quantification.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"28 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54019-1","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The practical application of rechargeable zinc-air batteries faces challenges stemming from inadequate bifunctional catalysts, contradictory gas-liquid-solid three-phase interfaces, and an ambiguous fundamental understanding. Herein, we propose a chameleon-like bifunctional catalyst comprising ruthenium single-atoms grafted onto nickel-iron layer double hydroxide (RuSA-NiFe LDH). The adaptive oxidation of RuSA-NiFe LDH to oxyhydroxide species (RuSA-NiFeOOH) during charging exposes active sites for the oxygen evolution reaction, while reversible reduction to NiFe LDH during discharge exposes active sites for the oxygen reduction reaction. Additionally, a hierarchical air cathode featuring hydrophilic and hydrophobic layers facilitates the reversible conversion between RuSA-NiFe LDH and RuSA-NiFeOOH, expedites oxygen bubble desorption, and suppresses carbon corrosion. Consequently, our zinc-air batteries demonstrate a high charge/discharge capacity of 100 mAh cm−2 per cycle, a voltage gap of 0.67 V, and an extended cycle life of 2400 h at 10 mA cm−2. We comprehensively elucidate the catalytic reaction thermodynamics and kinetics for the air cathode through electrode potential decoupling monitoring, oxygen bubble desorption tracking, and carbon content quantification.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
了解变色龙式双功能催化剂中的活性位点,实现实用的锌-空气充电电池
可充电锌-空气电池的实际应用面临着双功能催化剂不足、气-液-固三相界面相互矛盾以及基本认识模糊等挑战。在此,我们提出了一种类似变色龙的双功能催化剂,它由接枝到镍-铁双层氢氧化物(RuSA-NiFe LDH)上的钌单原子组成。充电时,RuSA-NiFe LDH 自适应氧化成氢氧化物(RuSA-NiFeOOH),为氧进化反应暴露出活性位点;放电时,RuSA-NiFe LDH 可逆还原成 NiFe LDH,为氧还原反应暴露出活性位点。此外,具有亲水层和疏水层的分层空气阴极促进了 RuSA-NiFe LDH 和 RuSA-NiFeOOH 之间的可逆转换,加快了氧泡解吸,并抑制了碳腐蚀。因此,我们的锌-空气电池具有每循环 100 mAh cm-2 的高充放电容量、0.67 V 的电压间隙以及在 10 mA cm-2 条件下 2400 小时的循环寿命。我们通过电极电位解耦监测、氧泡解吸跟踪和碳含量定量,全面阐明了空气阴极的催化反应热力学和动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Unlocking the potential of engineered immune cell therapy for solid tumors Oligoclonality of TRBC1 and TRBC2 in T cell lymphomas as mechanism of primary resistance to TRBC-directed CAR T cell therapies Reply to: Oligoclonality of TRBC1 and TRBC2 in T cell lymphomas as mechanism of primary resistance to TRBC-directed CAR T cell therapies Quantifying the shift of public export finance from fossil fuels to renewable energy Strength and durability of indirect protection against SARS-CoV-2 infection through vaccine and infection-acquired immunity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1