{"title":"Genetic and epigenetic bases of long-term adverse effects of childhood cancer therapy","authors":"Zhaoming Wang, Jinghui Zhang","doi":"10.1038/s41568-024-00768-6","DOIUrl":null,"url":null,"abstract":"<p>Over the past decade, genome-scale molecular profiling of large childhood cancer survivorship cohorts has led to unprecedented advances in our understanding of the genetic and epigenetic bases of therapy-related adverse health outcomes in this vulnerable population. To facilitate the integration of knowledge generated from these studies into formulating next-generation precision care for survivors of childhood cancer, we summarize key findings of genetic and epigenetic association studies of long-term therapy-related adverse effects including subsequent neoplasms and cardiomyopathies among others. We also discuss therapy-related genotoxicities including clonal haematopoiesis and DNA methylation, which may underlie accelerated molecular ageing. Finally, we highlight enhanced risk prediction models for survivors of childhood cancer that incorporate both genetic factors and treatment exposures, aiming to achieve enhanced accuracy in predicting risks for this population. These new insights will hopefully inspire future studies that harness both expanding omics resources and evolving data science methodology to accelerate the translation of precision medicine for survivors of childhood cancer.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"5 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41568-024-00768-6","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past decade, genome-scale molecular profiling of large childhood cancer survivorship cohorts has led to unprecedented advances in our understanding of the genetic and epigenetic bases of therapy-related adverse health outcomes in this vulnerable population. To facilitate the integration of knowledge generated from these studies into formulating next-generation precision care for survivors of childhood cancer, we summarize key findings of genetic and epigenetic association studies of long-term therapy-related adverse effects including subsequent neoplasms and cardiomyopathies among others. We also discuss therapy-related genotoxicities including clonal haematopoiesis and DNA methylation, which may underlie accelerated molecular ageing. Finally, we highlight enhanced risk prediction models for survivors of childhood cancer that incorporate both genetic factors and treatment exposures, aiming to achieve enhanced accuracy in predicting risks for this population. These new insights will hopefully inspire future studies that harness both expanding omics resources and evolving data science methodology to accelerate the translation of precision medicine for survivors of childhood cancer.
在过去的十年中,对大型儿童癌症幸存者队列进行基因组规模的分子分析,使我们对这一弱势群体中与治疗相关的不良健康后果的遗传和表观遗传基础的了解取得了前所未有的进展。为了便于将这些研究中获得的知识整合到为儿童癌症幸存者制定的下一代精准治疗中,我们总结了与长期治疗相关的不良反应(包括继发性肿瘤和心肌病等)的遗传和表观遗传关联研究的主要发现。我们还讨论了与治疗相关的基因毒性,包括克隆性造血和 DNA 甲基化,这可能是加速分子老化的原因。最后,我们重点介绍了针对儿童癌症幸存者的增强型风险预测模型,该模型结合了遗传因素和治疗暴露,旨在提高预测该人群风险的准确性。希望这些新见解能启发未来的研究,利用不断扩大的组学资源和不断发展的数据科学方法,加快精准医疗在儿童癌症幸存者中的应用。
期刊介绍:
Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences."
Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).