Unraveling the Plasmonic Effect of Au in Promoting Photocatalytic H2 Generation and Organic Synthesis

IF 7.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Sustainable Chemistry & Engineering Pub Date : 2024-11-07 DOI:10.1021/acssuschemeng.4c07440
Wenyao Cheng, Lele Wang, Hongxin Lao, Yingcong Wei, Jing Xu, Bo Weng
{"title":"Unraveling the Plasmonic Effect of Au in Promoting Photocatalytic H2 Generation and Organic Synthesis","authors":"Wenyao Cheng, Lele Wang, Hongxin Lao, Yingcong Wei, Jing Xu, Bo Weng","doi":"10.1021/acssuschemeng.4c07440","DOIUrl":null,"url":null,"abstract":"Incorporating plasmonic nanostructures into photocatalysts significantly enhances catalytic efficiency due to plasmonic effects. In this study, we successfully developed a heterojunction between organic semiconductor zinc porphyrin (Zn-TCPP) and colloidal gold (Au) nanoparticles connected via Au–O bonds. The formation of Au–O bonds between Zn-TCPP and Au facilitates charge transfer efficiency by reducing the Schottky barrier at the heterojunction interface. Finite-difference time-domain simulations, in situ XPS measurements, and infrared thermal imaging confirm that the strong localized surface plasmon resonance effect of Au enhances the local electric field and photothermal effect, promoting the separation of electron–hole pairs in the Zn-TCPP/Au sample and improving the reaction kinetics. The optimal Zn-TCPP/Au-2% composite demonstrates an impressive H<sub>2</sub> generation rate of 1610 μmol·g<sup>–1</sup>·h<sup>–1</sup>, which is 2.7 and 8.6 times greater than the Zn-TCPP and TCPP samples, respectively. Additionally, the Zn-TCPP/Au-2% composite shows high efficiency in the C–N coupling of benzylamine to imine, achieving a yield of 45.1 mmol·g<sup>–1</sup> in 24 h. This study provides a comprehensive understanding of how the plasmonic effect of Au enhances the activity of organic semiconductor photocatalysts.","PeriodicalId":25,"journal":{"name":"ACS Sustainable Chemistry & Engineering","volume":null,"pages":null},"PeriodicalIF":7.1000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Sustainable Chemistry & Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acssuschemeng.4c07440","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Incorporating plasmonic nanostructures into photocatalysts significantly enhances catalytic efficiency due to plasmonic effects. In this study, we successfully developed a heterojunction between organic semiconductor zinc porphyrin (Zn-TCPP) and colloidal gold (Au) nanoparticles connected via Au–O bonds. The formation of Au–O bonds between Zn-TCPP and Au facilitates charge transfer efficiency by reducing the Schottky barrier at the heterojunction interface. Finite-difference time-domain simulations, in situ XPS measurements, and infrared thermal imaging confirm that the strong localized surface plasmon resonance effect of Au enhances the local electric field and photothermal effect, promoting the separation of electron–hole pairs in the Zn-TCPP/Au sample and improving the reaction kinetics. The optimal Zn-TCPP/Au-2% composite demonstrates an impressive H2 generation rate of 1610 μmol·g–1·h–1, which is 2.7 and 8.6 times greater than the Zn-TCPP and TCPP samples, respectively. Additionally, the Zn-TCPP/Au-2% composite shows high efficiency in the C–N coupling of benzylamine to imine, achieving a yield of 45.1 mmol·g–1 in 24 h. This study provides a comprehensive understanding of how the plasmonic effect of Au enhances the activity of organic semiconductor photocatalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
揭示金在促进光催化 H2 生成和有机合成中的等离子效应
由于等离子效应,在光催化剂中加入等离子纳米结构可显著提高催化效率。在这项研究中,我们成功地开发出了有机半导体卟啉锌(Zn-TCPP)与通过 Au-O 键连接的胶体金(Au)纳米粒子之间的异质结。Zn-TCPP 和金之间形成的 Au-O 键降低了异质结界面上的肖特基势垒,从而提高了电荷转移效率。有限差分时域模拟、原位 XPS 测量和红外热成像证实,金的强局域表面等离子体共振效应增强了局部电场和光热效应,促进了 Zn-TCPP/Au 样品中电子-空穴对的分离,改善了反应动力学。最佳 Zn-TCPP/Au-2% 复合材料的 H2 生成率高达 1610 μmol-g-1-h-1,分别是 Zn-TCPP 和 TCPP 样品的 2.7 倍和 8.6 倍。此外,Zn-TCPP/Au-2% 复合材料在苄胺与亚胺的 C-N 偶联过程中也表现出很高的效率,24 小时内的产率达到 45.1 mmol-g-1。这项研究为我们全面了解金的等离子效应如何增强有机半导体光催化剂的活性提供了依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Sustainable Chemistry & Engineering
ACS Sustainable Chemistry & Engineering CHEMISTRY, MULTIDISCIPLINARY-ENGINEERING, CHEMICAL
CiteScore
13.80
自引率
4.80%
发文量
1470
审稿时长
1.7 months
期刊介绍: ACS Sustainable Chemistry & Engineering is a prestigious weekly peer-reviewed scientific journal published by the American Chemical Society. Dedicated to advancing the principles of green chemistry and green engineering, it covers a wide array of research topics including green chemistry, green engineering, biomass, alternative energy, and life cycle assessment. The journal welcomes submissions in various formats, including Letters, Articles, Features, and Perspectives (Reviews), that address the challenges of sustainability in the chemical enterprise and contribute to the advancement of sustainable practices. Join us in shaping the future of sustainable chemistry and engineering.
期刊最新文献
Multi-Stage Stochastic Programming Under Endogenous Uncertainty of Integrated Sustainable Chemical Process Design and Expansion Planning Enhancing Alloyed Nickel Sites via Heterogeneous CoP3–Ni2P Modification for Highly Efficient Urea Electrooxidation Zinc Metal-Free Anode Materials for High-Performance Aqueous Zinc-Ion Batteries: Recent Advances, Mechanisms, Challenges and Perspectives Electronically Activated CuFeO2 via Graphene Oxide for Highly Efficient CO2 Conversion into Long-Chain Hydrocarbons Photothermal Catalytic CO2 Conversion to Value-Added Chemicals: Progress and Prospects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1