Impact of atmospheric water-soluble iron on α-pinene-derived SOA formation and transformation in the presence of aqueous droplets†

IF 2.8 Q3 ENVIRONMENTAL SCIENCES Environmental science: atmospheres Pub Date : 2024-09-14 DOI:10.1039/D4EA00095A
Sabine Lüchtrath, Sven Klemer, Clément Dubois, Christian George and Andreas Held
{"title":"Impact of atmospheric water-soluble iron on α-pinene-derived SOA formation and transformation in the presence of aqueous droplets†","authors":"Sabine Lüchtrath, Sven Klemer, Clément Dubois, Christian George and Andreas Held","doi":"10.1039/D4EA00095A","DOIUrl":null,"url":null,"abstract":"<p >The impact of water-soluble atmospheric iron on formation, growth and aging of secondary organic aerosol (SOA) is a controversial subject in the literature. Iron chemistry drives Fenton reactions in the aqueous phase which is dependent on pH. Flow reactor experiments in the dark and under humid conditions were conducted to investigate systematically the influence of ferrous iron in the aqueous phase on α-pinene SOA by online physical analysis and offline high-resolution mass spectrometry. During the experiments increased SOA formation under conditions favorable for dark Fenton chemistry in the aqueous phase was observed. Furthermore, samples with an acidified and iron-containing aqueous phase showed a degradation of pinyl-diaterpenyl (C<small><sub>17</sub></small>H<small><sub>26</sub></small>O<small><sub>8</sub></small>) ester which ages through oxidation <em>via</em> OH radicals and can thus be evidence for ongoing degradation processes of high molecular weight molecules by iron chemistry. Moreover, higher abundance of dimer MW338 (C<small><sub>19</sub></small>H<small><sub>30</sub></small>O<small><sub>5</sub></small>) in the acidic sample affected by Fenton's chemistry was detected which is suggested to be formed <em>via</em> acid catalysis indicating competing acidity-driven reactions influencing SOA formation. Therefore, this study provides insight into the impact of aqueous phase iron on SOA formation and transformation under simulated natural conditions.</p>","PeriodicalId":72942,"journal":{"name":"Environmental science: atmospheres","volume":" 11","pages":" 1218-1228"},"PeriodicalIF":2.8000,"publicationDate":"2024-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2024/ea/d4ea00095a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental science: atmospheres","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ea/d4ea00095a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The impact of water-soluble atmospheric iron on formation, growth and aging of secondary organic aerosol (SOA) is a controversial subject in the literature. Iron chemistry drives Fenton reactions in the aqueous phase which is dependent on pH. Flow reactor experiments in the dark and under humid conditions were conducted to investigate systematically the influence of ferrous iron in the aqueous phase on α-pinene SOA by online physical analysis and offline high-resolution mass spectrometry. During the experiments increased SOA formation under conditions favorable for dark Fenton chemistry in the aqueous phase was observed. Furthermore, samples with an acidified and iron-containing aqueous phase showed a degradation of pinyl-diaterpenyl (C17H26O8) ester which ages through oxidation via OH radicals and can thus be evidence for ongoing degradation processes of high molecular weight molecules by iron chemistry. Moreover, higher abundance of dimer MW338 (C19H30O5) in the acidic sample affected by Fenton's chemistry was detected which is suggested to be formed via acid catalysis indicating competing acidity-driven reactions influencing SOA formation. Therefore, this study provides insight into the impact of aqueous phase iron on SOA formation and transformation under simulated natural conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大气中的水溶性铁对α-蒎烯衍生的 SOA 在水滴存在下的形成和转化的影响†。
水溶性大气铁对二次有机气溶胶(SOA)的形成、增长和老化的影响是文献中一个有争议的主题。铁的化学性质会驱动水相中的芬顿反应,而芬顿反应则取决于 pH 值。我们在黑暗和潮湿的条件下进行了流动反应器实验,通过在线物理分析和离线高分辨率质谱分析,系统地研究了水相中的亚铁对α-蒎烯 SOA 的影响。在实验过程中,观察到在有利于水相中暗芬顿化学反应的条件下,SOA 的形成有所增加。此外,酸化和含铁水相中的样品显示出蒎基-二萜(C17H26O8)酯的降解,这种降解是通过羟基自由基氧化老化的,因此可以证明铁化学作用正在对高分子量分子进行降解。此外,在受 Fenton 化学作用影响的酸性样品中检测到了较多的二聚体 MW338(C19H30O5),这表明二聚体是通过酸催化形成的,表明酸性驱动的竞争反应影响了 SOA 的形成。因此,这项研究有助于深入了解在模拟自然条件下,水相铁对 SOA 形成和转化的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
期刊最新文献
Back cover Real-time chemical characterization of primary and aged biomass burning aerosols derived from sub-Saharan African biomass fuels in smoldering fires. A framework for describing and classifying methane reporting requirements, emission sources, and monitoring methods† Does gas-phase sulfur dioxide remove films of atmosphere-extracted organic material from the aqueous aerosol air–water interface?† Enhanced detection of aromatic oxidation products using NO3 - chemical ionization mass spectrometry with limited nitric acid.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1