{"title":"Information gathering in POMDPs using active inference","authors":"Erwin Walraven, Joris Sijs, Gertjan J. Burghouts","doi":"10.1007/s10458-024-09683-4","DOIUrl":null,"url":null,"abstract":"<div><p>Gathering information about the environment state is the main goal in several planning tasks for autonomous agents, such as surveillance, inspection and tracking of objects. Such planning tasks are typically modeled using a Partially Observable Markov Decision Process (POMDP), and in the literature several approaches have emerged to consider information gathering during planning and execution. Similar developments can be seen in the field of active inference, which focuses on active information collection in order to be able to reach a goal. Both fields use POMDPs to model the environment, but the underlying principles for action selection are different. In this paper we create a bridge between both research fields by discussing how they relate to each other and how they can be used for information gathering. Our contribution is a tailored approach to model information gathering tasks directly in the active inference framework. A series of experiments demonstrates that our approach enables agents to gather information about the environment state. As a result, active inference becomes an alternative to common POMDP approaches for information gathering, which opens the door towards more cross cutting research at the intersection of both fields. This is advantageous, because recent advancements in POMDP solvers may be used to accelerate active inference, and the principled active inference framework may be used to model POMDP agents that operate in a neurobiologically plausible fashion.</p></div>","PeriodicalId":55586,"journal":{"name":"Autonomous Agents and Multi-Agent Systems","volume":"39 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Autonomous Agents and Multi-Agent Systems","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10458-024-09683-4","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Gathering information about the environment state is the main goal in several planning tasks for autonomous agents, such as surveillance, inspection and tracking of objects. Such planning tasks are typically modeled using a Partially Observable Markov Decision Process (POMDP), and in the literature several approaches have emerged to consider information gathering during planning and execution. Similar developments can be seen in the field of active inference, which focuses on active information collection in order to be able to reach a goal. Both fields use POMDPs to model the environment, but the underlying principles for action selection are different. In this paper we create a bridge between both research fields by discussing how they relate to each other and how they can be used for information gathering. Our contribution is a tailored approach to model information gathering tasks directly in the active inference framework. A series of experiments demonstrates that our approach enables agents to gather information about the environment state. As a result, active inference becomes an alternative to common POMDP approaches for information gathering, which opens the door towards more cross cutting research at the intersection of both fields. This is advantageous, because recent advancements in POMDP solvers may be used to accelerate active inference, and the principled active inference framework may be used to model POMDP agents that operate in a neurobiologically plausible fashion.
期刊介绍:
This is the official journal of the International Foundation for Autonomous Agents and Multi-Agent Systems. It provides a leading forum for disseminating significant original research results in the foundations, theory, development, analysis, and applications of autonomous agents and multi-agent systems. Coverage in Autonomous Agents and Multi-Agent Systems includes, but is not limited to:
Agent decision-making architectures and their evaluation, including: cognitive models; knowledge representation; logics for agency; ontological reasoning; planning (single and multi-agent); reasoning (single and multi-agent)
Cooperation and teamwork, including: distributed problem solving; human-robot/agent interaction; multi-user/multi-virtual-agent interaction; coalition formation; coordination
Agent communication languages, including: their semantics, pragmatics, and implementation; agent communication protocols and conversations; agent commitments; speech act theory
Ontologies for agent systems, agents and the semantic web, agents and semantic web services, Grid-based systems, and service-oriented computing
Agent societies and societal issues, including: artificial social systems; environments, organizations and institutions; ethical and legal issues; privacy, safety and security; trust, reliability and reputation
Agent-based system development, including: agent development techniques, tools and environments; agent programming languages; agent specification or validation languages
Agent-based simulation, including: emergent behavior; participatory simulation; simulation techniques, tools and environments; social simulation
Agreement technologies, including: argumentation; collective decision making; judgment aggregation and belief merging; negotiation; norms
Economic paradigms, including: auction and mechanism design; bargaining and negotiation; economically-motivated agents; game theory (cooperative and non-cooperative); social choice and voting
Learning agents, including: computational architectures for learning agents; evolution, adaptation; multi-agent learning.
Robotic agents, including: integrated perception, cognition, and action; cognitive robotics; robot planning (including action and motion planning); multi-robot systems.
Virtual agents, including: agents in games and virtual environments; companion and coaching agents; modeling personality, emotions; multimodal interaction; verbal and non-verbal expressiveness
Significant, novel applications of agent technology
Comprehensive reviews and authoritative tutorials of research and practice in agent systems
Comprehensive and authoritative reviews of books dealing with agents and multi-agent systems.