Wencheng Lu
(, ), Yiding Wu
(, ), Minghui Ma
(, ), Yilei Yu
(, ), Xuan Zhou
(, ), Botong Wang
(, ), Guangfa Gao
(, )
{"title":"Enhanced ballistic resistance of SiC ceramic-fiber composite armor: an investigation of fiber laminate backing effects and fragmentation dynamics","authors":"Wencheng Lu \n (, ), Yiding Wu \n (, ), Minghui Ma \n (, ), Yilei Yu \n (, ), Xuan Zhou \n (, ), Botong Wang \n (, ), Guangfa Gao \n (, )","doi":"10.1007/s10409-024-24004-x","DOIUrl":null,"url":null,"abstract":"<div><p>This study examines the penetration of 12.7 mm armor piercing incendiary projectiles into SiC ceramic-fiber composite target plates. By observing the recovered projectile and the overall damage morphology of the ceramic-fiber composite target plates. Additionally, multi-level screening and weighing of the recovered projectile and ceramic fragments revealed that the mass distribution of the projectile and ceramic fragments under different backing structures conforms to a power-law distribution. Experimental results indicate that for single laminate as the backing, the fragmentation of the projectile and ceramics is highest when T300 is the material. Incorporating a T300 transition layer between the SiC ceramic and aramid fibers (Kevlar) or ultra-high molecular weight polyethylene (UHMWPE) increases the fragmentation of the projectile and ceramics, leading to increased energy absorption. The projectile’s head mainly exhibits pulverized abrasive fragmentation, while larger projectile fragments primarily result from shear and tensile stress-induced shear-tensile failure fractures. The primary damage mode of ceramics under high-speed impact is the expansion of ceramic cones and radial cracks. The main form of damage in UHMWPE laminate is interlayer separation caused by tensile waves, permanent plastic deformation at the back protrusion, and perforation failure primarily due to shear waves. The damage mode of Kevlar laminate is similar to that of UHMWPE, with the distinction being that Kevlar laminate primarily exhibits perforation failure caused by tensile waves. Carbon fiber T300 laminate damage mainly consists of cross-shaped brittle fractures caused by shear waves.</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":7109,"journal":{"name":"Acta Mechanica Sinica","volume":"40 11","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Mechanica Sinica","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10409-024-24004-x","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study examines the penetration of 12.7 mm armor piercing incendiary projectiles into SiC ceramic-fiber composite target plates. By observing the recovered projectile and the overall damage morphology of the ceramic-fiber composite target plates. Additionally, multi-level screening and weighing of the recovered projectile and ceramic fragments revealed that the mass distribution of the projectile and ceramic fragments under different backing structures conforms to a power-law distribution. Experimental results indicate that for single laminate as the backing, the fragmentation of the projectile and ceramics is highest when T300 is the material. Incorporating a T300 transition layer between the SiC ceramic and aramid fibers (Kevlar) or ultra-high molecular weight polyethylene (UHMWPE) increases the fragmentation of the projectile and ceramics, leading to increased energy absorption. The projectile’s head mainly exhibits pulverized abrasive fragmentation, while larger projectile fragments primarily result from shear and tensile stress-induced shear-tensile failure fractures. The primary damage mode of ceramics under high-speed impact is the expansion of ceramic cones and radial cracks. The main form of damage in UHMWPE laminate is interlayer separation caused by tensile waves, permanent plastic deformation at the back protrusion, and perforation failure primarily due to shear waves. The damage mode of Kevlar laminate is similar to that of UHMWPE, with the distinction being that Kevlar laminate primarily exhibits perforation failure caused by tensile waves. Carbon fiber T300 laminate damage mainly consists of cross-shaped brittle fractures caused by shear waves.
期刊介绍:
Acta Mechanica Sinica, sponsored by the Chinese Society of Theoretical and Applied Mechanics, promotes scientific exchanges and collaboration among Chinese scientists in China and abroad. It features high quality, original papers in all aspects of mechanics and mechanical sciences.
Not only does the journal explore the classical subdivisions of theoretical and applied mechanics such as solid and fluid mechanics, it also explores recently emerging areas such as biomechanics and nanomechanics. In addition, the journal investigates analytical, computational, and experimental progresses in all areas of mechanics. Lastly, it encourages research in interdisciplinary subjects, serving as a bridge between mechanics and other branches of engineering and the sciences.
In addition to research papers, Acta Mechanica Sinica publishes reviews, notes, experimental techniques, scientific events, and other special topics of interest.
Related subjects » Classical Continuum Physics - Computational Intelligence and Complexity - Mechanics