{"title":"Non-equilibrium BCS-BEC crossover and unconventional FFLO superfluid in a strongly interacting driven-dissipative Fermi gas","authors":"Taira Kawamura, Yoji Ohashi","doi":"10.1007/s43673-024-00137-3","DOIUrl":null,"url":null,"abstract":"<div><p>We present a theoretical review of the recent progress in non-equilibrium BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover physics. As a paradigmatic example, we consider a strongly interacting driven-dissipative two-component Fermi gas where the non-equilibrium steady state is tuned by adjusting the chemical potential difference between two reservoirs that are coupled with the system. As a powerful theoretical tool to deal with this system, we employ the Schwinger-Keldysh Green’s function technique. We systematically evaluate the superfluid transition, as well as the single-particle properties, in the non-equilibrium BCS-BEC crossover region, by adjusting the chemical potential difference between the reservoirs and the strength of an <i>s</i>-wave pairing interaction associated with a Feshbach resonance. In the weak-coupling BCS side, the chemical potential difference is shown to imprint a two-step structure on the particle momentum distribution, leading to an anomalous enhancement of pseudogap, as well as the emergence of exotic Fulde-Ferrell-Larkin-Ovchinnikov-type superfluid instability. Since various non-equilibrium situations have recently been realized in ultracold Fermi gases, the theoretical understanding of non-equilibrium BCS-BEC crossover physics would become increasingly important in this research field.</p></div>","PeriodicalId":100007,"journal":{"name":"AAPPS Bulletin","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43673-024-00137-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAPPS Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43673-024-00137-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We present a theoretical review of the recent progress in non-equilibrium BCS (Bardeen-Cooper-Schrieffer)-BEC (Bose-Einstein condensation) crossover physics. As a paradigmatic example, we consider a strongly interacting driven-dissipative two-component Fermi gas where the non-equilibrium steady state is tuned by adjusting the chemical potential difference between two reservoirs that are coupled with the system. As a powerful theoretical tool to deal with this system, we employ the Schwinger-Keldysh Green’s function technique. We systematically evaluate the superfluid transition, as well as the single-particle properties, in the non-equilibrium BCS-BEC crossover region, by adjusting the chemical potential difference between the reservoirs and the strength of an s-wave pairing interaction associated with a Feshbach resonance. In the weak-coupling BCS side, the chemical potential difference is shown to imprint a two-step structure on the particle momentum distribution, leading to an anomalous enhancement of pseudogap, as well as the emergence of exotic Fulde-Ferrell-Larkin-Ovchinnikov-type superfluid instability. Since various non-equilibrium situations have recently been realized in ultracold Fermi gases, the theoretical understanding of non-equilibrium BCS-BEC crossover physics would become increasingly important in this research field.