{"title":"Learn to Collaborate in MEC: An Adaptive Decentralized Federated Learning Framework","authors":"Yatong Wang;Zhongyi Wen;Yunjie Li;Bin Cao","doi":"10.1109/TMC.2024.3439588","DOIUrl":null,"url":null,"abstract":"Decentralized federated learning (DFL) has emerged as a conducive paradigm, facilitating a distributed privacy-preserving data collaboration mode in mobile edge computing (MEC) systems to bolster the expansion of artificial intelligence applications. Nevertheless, the dynamic wireless environment and the heterogeneity among collaborating nodes, characterized by skewed datasets and uneven capabilities, present substantial challenges for efficient DFL model training in MEC systems. Consequently, the design of an efficient collaboration strategy becomes essential to facilitate practical distributed knowledge sharing and cost reduction for MEC. In this paper, we propose an adaptive decentralized federated learning framework that enables heterogeneous nodes to learn tailored collaboration strategies, thereby maximizing the efficiency of the DFL training process in collaborative MEC systems. Specifically, we present an effective option critic-based collaboration strategy learning (OCSL) mechanism by decomposing the collaboration strategy model into two sub-strategies: local training strategy and resource scheduling strategy. In addressing inherent issues such as large-scale action space and overestimation in collaboration strategy learning, we introduce the option framework and a dual critic network-based approximation method within the OCSL design. We theoretically prove that the learned collaboration strategy achieves the Nash equilibrium. Extensive numerical results demonstrate the effectiveness of the proposed method in comparison with existing baselines.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":null,"pages":null},"PeriodicalIF":7.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10639487/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Decentralized federated learning (DFL) has emerged as a conducive paradigm, facilitating a distributed privacy-preserving data collaboration mode in mobile edge computing (MEC) systems to bolster the expansion of artificial intelligence applications. Nevertheless, the dynamic wireless environment and the heterogeneity among collaborating nodes, characterized by skewed datasets and uneven capabilities, present substantial challenges for efficient DFL model training in MEC systems. Consequently, the design of an efficient collaboration strategy becomes essential to facilitate practical distributed knowledge sharing and cost reduction for MEC. In this paper, we propose an adaptive decentralized federated learning framework that enables heterogeneous nodes to learn tailored collaboration strategies, thereby maximizing the efficiency of the DFL training process in collaborative MEC systems. Specifically, we present an effective option critic-based collaboration strategy learning (OCSL) mechanism by decomposing the collaboration strategy model into two sub-strategies: local training strategy and resource scheduling strategy. In addressing inherent issues such as large-scale action space and overestimation in collaboration strategy learning, we introduce the option framework and a dual critic network-based approximation method within the OCSL design. We theoretically prove that the learned collaboration strategy achieves the Nash equilibrium. Extensive numerical results demonstrate the effectiveness of the proposed method in comparison with existing baselines.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.