Toward reliable prediction of CO2 uptake capacity of metal–organic frameworks (MOFs): implementation of white-box machine learning

IF 3 4区 工程技术 Q3 CHEMISTRY, PHYSICAL Adsorption Pub Date : 2024-09-21 DOI:10.1007/s10450-024-00531-1
Aydin Larestani, Ahmadreza Jafari-Sirizi, Fahimeh Hadavimoghaddam, Saeid Atashrouz, Dragutin Nedeljkovic, Ahmad Mohaddespour, Abdolhossein Hemmati-Sarapardeh
{"title":"Toward reliable prediction of CO2 uptake capacity of metal–organic frameworks (MOFs): implementation of white-box machine learning","authors":"Aydin Larestani,&nbsp;Ahmadreza Jafari-Sirizi,&nbsp;Fahimeh Hadavimoghaddam,&nbsp;Saeid Atashrouz,&nbsp;Dragutin Nedeljkovic,&nbsp;Ahmad Mohaddespour,&nbsp;Abdolhossein Hemmati-Sarapardeh","doi":"10.1007/s10450-024-00531-1","DOIUrl":null,"url":null,"abstract":"<div><p>The burning of fossil fuels is the major cause of the surge in atmospheric CO<sub>2</sub> concentration. The unique properties of Metal–organic frameworks (MOFs) have made them a highly promising and efficient class of materials for gas adsorption projects. In this piece of research, white-box machine learning algorithms, including gene expression programming (GEP), group method of data handling (GMDH), and genetic programming (GP), are implemented to generate reliable and efficient explicit correlations for estimating CO<sub>2</sub> uptake capacity of MOFs based on the most extensive databank gathered up-to-date containing 6530 data points from 88 different MOFs. The CO<sub>2</sub> uptake capacity is considered a strong function of pressure, temperature, surface area, and pore volume. The results indicated that the GMDH correlation could provide more reliable results by showing total root mean square error (RMSE) and correlation coefficient (R<sup>2</sup>) of 2.77 mmol/g and 0.8496, respectively. Also, the trend analysis reflected that this correlation could precisely detect the physical trend of CO<sub>2</sub> uptake capacity with pressure variations. Moreover, the sensitivity analysis showed the high impact of pressure on the estimated CO<sub>2</sub> uptake capacity values. Based on the sensitivity analysis of the GMDH correlation’s estimations, it can be expected that the CO<sub>2</sub> adsorption capacity of MOFs increases by raising MOFs’ surface area and pore volume and designing the adsorption process at elevated pressures and lower temperatures. The proposed correlation can be simply employed to estimate MOFs’ CO<sub>2</sub> uptake capacity with an acceptable level of confidence using a simple calculator.</p></div>","PeriodicalId":458,"journal":{"name":"Adsorption","volume":"30 8","pages":"1985 - 2003"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Adsorption","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10450-024-00531-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The burning of fossil fuels is the major cause of the surge in atmospheric CO2 concentration. The unique properties of Metal–organic frameworks (MOFs) have made them a highly promising and efficient class of materials for gas adsorption projects. In this piece of research, white-box machine learning algorithms, including gene expression programming (GEP), group method of data handling (GMDH), and genetic programming (GP), are implemented to generate reliable and efficient explicit correlations for estimating CO2 uptake capacity of MOFs based on the most extensive databank gathered up-to-date containing 6530 data points from 88 different MOFs. The CO2 uptake capacity is considered a strong function of pressure, temperature, surface area, and pore volume. The results indicated that the GMDH correlation could provide more reliable results by showing total root mean square error (RMSE) and correlation coefficient (R2) of 2.77 mmol/g and 0.8496, respectively. Also, the trend analysis reflected that this correlation could precisely detect the physical trend of CO2 uptake capacity with pressure variations. Moreover, the sensitivity analysis showed the high impact of pressure on the estimated CO2 uptake capacity values. Based on the sensitivity analysis of the GMDH correlation’s estimations, it can be expected that the CO2 adsorption capacity of MOFs increases by raising MOFs’ surface area and pore volume and designing the adsorption process at elevated pressures and lower temperatures. The proposed correlation can be simply employed to estimate MOFs’ CO2 uptake capacity with an acceptable level of confidence using a simple calculator.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
金属有机框架(MOFs)二氧化碳吸收能力的可靠预测:白盒机器学习的实现
化石燃料的燃烧是大气中二氧化碳浓度激增的主要原因。金属有机框架(MOFs)的独特性能使其成为一类极具潜力的高效气体吸附材料。在这项研究中,采用了白盒机器学习算法,包括基因表达编程(GEP)、分组数据处理方法(GMDH)和遗传编程(GP),根据最新收集的最广泛的数据库(包含来自 88 种不同 MOF 的 6530 个数据点)生成可靠、高效的显式相关性,用于估算 MOF 的二氧化碳吸收能力。二氧化碳吸收能力被认为是压力、温度、表面积和孔体积的强函数。结果表明,GMDH 相关性能提供更可靠的结果,总均方根误差 (RMSE) 和相关系数 (R2) 分别为 2.77 mmol/g 和 0.8496。同时,趋势分析表明,该相关性可以精确检测二氧化碳吸收能力随压力变化的物理趋势。此外,敏感性分析表明,压力对二氧化碳吸收能力估计值的影响很大。根据 GMDH 相关性估算的灵敏度分析,可以预计 MOFs 的二氧化碳吸附容量会随着 MOFs 表面积和孔隙体积的增加而增加,并且吸附过程会设计在较高压力和较低温度下进行。使用简单的计算器,就能以可接受的置信度简单估算出所提出的相关关系,从而估算出 MOFs 的二氧化碳吸附能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Adsorption
Adsorption 工程技术-工程:化工
CiteScore
8.10
自引率
3.00%
发文量
18
审稿时长
2.4 months
期刊介绍: The journal Adsorption provides authoritative information on adsorption and allied fields to scientists, engineers, and technologists throughout the world. The information takes the form of peer-reviewed articles, R&D notes, topical review papers, tutorial papers, book reviews, meeting announcements, and news. Coverage includes fundamental and practical aspects of adsorption: mathematics, thermodynamics, chemistry, and physics, as well as processes, applications, models engineering, and equipment design. Among the topics are Adsorbents: new materials, new synthesis techniques, characterization of structure and properties, and applications; Equilibria: novel theories or semi-empirical models, experimental data, and new measurement methods; Kinetics: new models, experimental data, and measurement methods. Processes: chemical, biochemical, environmental, and other applications, purification or bulk separation, fixed bed or moving bed systems, simulations, experiments, and design procedures.
期刊最新文献
Equilibrium loadings and adsorption isotherm model parameters estimated from multi-component breakthrough curves IAST and GCMC predictions and experimental measurements of gas mixture adsorption on three metal–organic frameworks Adsorption and evolution of N2 molecules over ZnO monolayer: a combined DFT and kinetic Monte-Carlo insight Five definitions of adsorption and their relevance to the formulation of dynamic mass balances in gas adsorption columns Gold and platinum functionalized arsenene for the detection of CH3Cl and CH3Br: first-principles insights
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1