Chunxi Liu, Fangrui Hong, Zhile Liu, Li Zhou, Xuanxu Jin, Zhiwei Lin
{"title":"Robust predictive control strategy for grid-connected inverters with ultra-local model based on linear matrix inequality","authors":"Chunxi Liu, Fangrui Hong, Zhile Liu, Li Zhou, Xuanxu Jin, Zhiwei Lin","doi":"10.1049/pel2.12760","DOIUrl":null,"url":null,"abstract":"<p>To address the issue of poor robustness in the model predictive control of grid-connected inverters due to disturbances in load model parameters, this article developed an ultra-local model robust predictive controller based on Linear Matrix Inequality (LMI). First, to avoid dependence on model parameters, an ultra-local model of the system was constructed. Second, in the process of setting the state variable compensation gain, to simplify the complex computational steps of the traditional Lyapunov algorithm, the task of finding the gain that satisfies the Lyapunov stability condition was ingeniously transformed into an optimization problem of solving constrained LMI. Third, the optimized state variables are utilized to design a new cost function predictive model, thereby enhancing the precision of system control. Finally, the effectiveness of the proposed approach has been validated through simulations and experiments.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/pel2.12760","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/pel2.12760","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
To address the issue of poor robustness in the model predictive control of grid-connected inverters due to disturbances in load model parameters, this article developed an ultra-local model robust predictive controller based on Linear Matrix Inequality (LMI). First, to avoid dependence on model parameters, an ultra-local model of the system was constructed. Second, in the process of setting the state variable compensation gain, to simplify the complex computational steps of the traditional Lyapunov algorithm, the task of finding the gain that satisfies the Lyapunov stability condition was ingeniously transformed into an optimization problem of solving constrained LMI. Third, the optimized state variables are utilized to design a new cost function predictive model, thereby enhancing the precision of system control. Finally, the effectiveness of the proposed approach has been validated through simulations and experiments.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.