Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers

IF 2.9 4区 化学 Q2 POLYMER SCIENCE Polymer International Pub Date : 2024-10-05 DOI:10.1002/pi.6702
Marlow M. Durbin, Irene Votta, Alex H. Balzer, Michal Procházka, Marian Valentin, Mária Omastová, Natalie Stingelin
{"title":"Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers","authors":"Marlow M. Durbin,&nbsp;Irene Votta,&nbsp;Alex H. Balzer,&nbsp;Michal Procházka,&nbsp;Marian Valentin,&nbsp;Mária Omastová,&nbsp;Natalie Stingelin","doi":"10.1002/pi.6702","DOIUrl":null,"url":null,"abstract":"<p>Molecular hybrid materials based on widely available polymers crosslinked with an inorganic species have received increasing interest for their unique property sets outside of the usual range of commodity plastics and/or nanocomposites. Here, we provide a mini-review on molecular hybrids based on metal oxide hydrates—compounds that readily react with, for example, hydroxylated polymers to form inorganic:organic materials systems with many desirable features and properties. Focusing on titanium oxide hydrates, we discuss here that such molecular hybrids can exhibit a broad refractive index range in addition to an increased glass transition temperature, mechanical stiffness and swelling resistance in comparison to the neat polymer, which illustrates that such hybrid systems offer a new, low-cost, robust and versatile functional materials platform with great promise for, for example, solution-processed photonics, catalysts and antimicrobial coatings. Generally, our mini-review seeks to provide a concise and accessible overview of titanium oxide hydrate:polymer hybrid systems, focusing on their unique properties and processability as well as their broad and largely untapped potential as functional materials. © 2024 The Author(s). <i>Polymer International</i> published by John Wiley &amp; Sons Ltd on behalf of Society of Chemical Industry.</p>","PeriodicalId":20404,"journal":{"name":"Polymer International","volume":"73 12","pages":"1017-1021"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pi.6702","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer International","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pi.6702","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular hybrid materials based on widely available polymers crosslinked with an inorganic species have received increasing interest for their unique property sets outside of the usual range of commodity plastics and/or nanocomposites. Here, we provide a mini-review on molecular hybrids based on metal oxide hydrates—compounds that readily react with, for example, hydroxylated polymers to form inorganic:organic materials systems with many desirable features and properties. Focusing on titanium oxide hydrates, we discuss here that such molecular hybrids can exhibit a broad refractive index range in addition to an increased glass transition temperature, mechanical stiffness and swelling resistance in comparison to the neat polymer, which illustrates that such hybrid systems offer a new, low-cost, robust and versatile functional materials platform with great promise for, for example, solution-processed photonics, catalysts and antimicrobial coatings. Generally, our mini-review seeks to provide a concise and accessible overview of titanium oxide hydrate:polymer hybrid systems, focusing on their unique properties and processability as well as their broad and largely untapped potential as functional materials. © 2024 The Author(s). Polymer International published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
作为多功能聚合物交联剂和分子杂化形成剂的氧化钛水合物
基于与无机物交联的广泛可用聚合物的分子杂化材料,因其超出普通商品塑料和/或纳米复合材料范围的独特性能而受到越来越多的关注。在此,我们将对基于金属氧化物水合物的分子杂化材料进行小型综述--这种化合物很容易与羟基聚合物等发生反应,形成具有许多理想特性和性能的无机:有机材料系统。以氧化钛水合物为重点,我们在此讨论,与纯聚合物相比,这种分子杂化物除了能提高玻璃化转变温度、机械刚度和抗溶胀性之外,还能显示出宽广的折射率范围,这说明这种杂化物体系提供了一种新型、低成本、坚固耐用且用途广泛的功能材料平台,在溶液加工光子学、催化剂和抗菌涂层等方面大有可为。总体而言,我们的微型综述旨在提供有关氧化钛水合物:聚合物杂化体系的简明易懂的概述,重点关注其独特的性能和可加工性,以及作为功能材料尚未开发的广泛潜力。© 2024 作者简介国际聚合物》由 John Wiley & Sons Ltd 代表化学工业协会出版。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer International
Polymer International 化学-高分子科学
CiteScore
7.10
自引率
3.10%
发文量
135
审稿时长
4.3 months
期刊介绍: Polymer International (PI) publishes the most significant advances in macromolecular science and technology. PI especially welcomes research papers that address applications that fall within the broad headings Energy and Electronics, Biomedical Studies, and Water, Environment and Sustainability. The Journal’s editors have identified these as the major challenges facing polymer scientists worldwide. The Journal also publishes invited Review, Mini-review and Perspective papers that address these challenges and others that may be of growing or future relevance to polymer scientists and engineers.
期刊最新文献
Issue Information Titanium oxide hydrates as versatile polymer crosslinkers and molecular-hybrid formers Issue Information Natural polymers for emerging technological applications: cellulose, lignin, shellac and silk Investigate Performance of ATGF nanocomposite based on guar gum polymer for adsorption of Congo Red dye and alpha lipoic acid drug from wastewater: study kinetics and simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1