Activation of iridium site based on IrO2 catalysts towards highly stable PEM water electrolyzer

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL Chemical Engineering Science Pub Date : 2024-11-08 DOI:10.1016/j.ces.2024.120912
Hongmei Gao , Chi Song , Ru Chen , Tianyu Wu , Jun Zou , Shiqian Du , Chung-Li Dong , Yu-Cheng Huang , Rilong Zhu , Yanan Wang , Shuangyin Wang
{"title":"Activation of iridium site based on IrO2 catalysts towards highly stable PEM water electrolyzer","authors":"Hongmei Gao ,&nbsp;Chi Song ,&nbsp;Ru Chen ,&nbsp;Tianyu Wu ,&nbsp;Jun Zou ,&nbsp;Shiqian Du ,&nbsp;Chung-Li Dong ,&nbsp;Yu-Cheng Huang ,&nbsp;Rilong Zhu ,&nbsp;Yanan Wang ,&nbsp;Shuangyin Wang","doi":"10.1016/j.ces.2024.120912","DOIUrl":null,"url":null,"abstract":"<div><div>The exploitation of anode electrocatalysts with high activity and stability remains an enormous challenge in proton exchange membrane (PEM) water electrolyzer. Here we doped Mn to activate Ir site in IrO<sub>2</sub> through the molten salt sealing method, and the optimized Mn<sub>0.1</sub>Ir<sub>0.9</sub>O<sub>2</sub> exhibited superior OER performance. Mn doping optimized the electronic structure and dominant crystal planes of IrO<sub>2</sub>, as evidenced by our complementary characterizations. Impressively, the Mn<sub>0.1</sub>Ir<sub>0.9</sub>O<sub>2</sub> exhibits superior performance in the PEM water electrolyzer, only requiring 1.79 V to attain 1 A cm<sup>−2</sup> and offering long-term stability over 1200 h (attenuated only 17.5 μV h<sup>−1</sup> compared to 1.27 mV/h for the original sample). DFT calculation shows Mn doping could activate Ir site, thus reducing the energy barrier of the rate-determining step for promoting OER. This work provides a strategy to design high-tolerance catalysts for the PEM water electrolyzer in actual working conditions.</div></div>","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"302 ","pages":"Article 120912"},"PeriodicalIF":4.3000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009250924012120","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The exploitation of anode electrocatalysts with high activity and stability remains an enormous challenge in proton exchange membrane (PEM) water electrolyzer. Here we doped Mn to activate Ir site in IrO2 through the molten salt sealing method, and the optimized Mn0.1Ir0.9O2 exhibited superior OER performance. Mn doping optimized the electronic structure and dominant crystal planes of IrO2, as evidenced by our complementary characterizations. Impressively, the Mn0.1Ir0.9O2 exhibits superior performance in the PEM water electrolyzer, only requiring 1.79 V to attain 1 A cm−2 and offering long-term stability over 1200 h (attenuated only 17.5 μV h−1 compared to 1.27 mV/h for the original sample). DFT calculation shows Mn doping could activate Ir site, thus reducing the energy barrier of the rate-determining step for promoting OER. This work provides a strategy to design high-tolerance catalysts for the PEM water electrolyzer in actual working conditions.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 IrO2 催化剂的铱位点活化,实现高度稳定的 PEM 水电解槽
在质子交换膜(PEM)水电解槽中,开发具有高活性和稳定性的阳极电催化剂仍然是一项巨大的挑战。在此,我们通过熔盐密封法掺杂锰以激活 IrO2 中的 Ir 位点,优化后的 Mn0.1Ir0.9O2 表现出优异的 OER 性能。掺入的锰优化了IrO2的电子结构和主要晶面,这一点在我们的互补表征中得到了证明。令人印象深刻的是,Mn0.1Ir0.9O2 在 PEM 水电解槽中表现出了卓越的性能,只需要 1.79 V 就能达到 1 A cm-2,并能在 1200 小时内保持长期稳定性(衰减率仅为 17.5 μV h-1,而原始样品的衰减率为 1.27 mV/h)。DFT 计算表明,锰掺杂可激活 Ir 位点,从而降低促进 OER 的速率决定步骤的能垒。这项工作为在实际工作条件下为 PEM 水电解槽设计高耐受性催化剂提供了一种策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
期刊最新文献
Highly dense graphene-supported NiFe dual-atom oxygen electrocatalysts with boosted bifunctional electrocatalytic performance for rechargeable zinc-air batteries Engineering yolk-shell high-entropy oxides for durable urea wastewater remediation via anion exchange membrane electrolysis Volume-temperature flash calculation for multiphase equilibrium of hydrocarbon mixtures confined in nanopores Data-mechanism dual-driven modeling for enhanced prediction of lignin Hansen solubility parameters Oxygen vacancy-rich Bi12O17Cl12/BiOBr S-scheme heterojunction for enhanced photocatalytic degradation ciprofloxacin: Performance, mechanism and toxicity assessment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1