{"title":"Gate-controllable two-dimensional transition metal dichalcogenides for spintronic memory","authors":"Shih-Hung Cheng, Ting-I Kuo, Er-Feng Hsieh, Wen-Jeng Hsueh","doi":"10.1016/j.jallcom.2024.177487","DOIUrl":null,"url":null,"abstract":"Rapid technological advancement has increased the demand for high-speed, low-power devices, particularly applied in artificial intelligence (AI) and the Internet of Things (IoT). Limitations of traditional memory devices underscore the urgency for high-performance, energy-efficient memory technologies. On the other hand, developing two-dimensional (2D) material-based devices is indispensable for next-generation memory and three-dimensional integration circuit (3D-IC) systems. Here, we propose a gate-controllable spin valve utilizing transition metal dichalcogenides (TMDs) to meet the urgent need. A high tunneling magnetoresistance (TMR) of over 4000% can be reached in reading with the help of the controlled gate. Moreover, under ungated conditions, a giant spin current density with an ultralow power consumption of 80 <em>μ</em>W and a high spin-polarized ratio of 0.9 can be achieved, enabling high-speed and energy-efficient switching during writing. According to our design, the gate-controllable system can prevent undesired mixed reading and writing operations. Our results highlight TMDs as a promising material in spintronic memory devices.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":null,"pages":null},"PeriodicalIF":5.8000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177487","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Rapid technological advancement has increased the demand for high-speed, low-power devices, particularly applied in artificial intelligence (AI) and the Internet of Things (IoT). Limitations of traditional memory devices underscore the urgency for high-performance, energy-efficient memory technologies. On the other hand, developing two-dimensional (2D) material-based devices is indispensable for next-generation memory and three-dimensional integration circuit (3D-IC) systems. Here, we propose a gate-controllable spin valve utilizing transition metal dichalcogenides (TMDs) to meet the urgent need. A high tunneling magnetoresistance (TMR) of over 4000% can be reached in reading with the help of the controlled gate. Moreover, under ungated conditions, a giant spin current density with an ultralow power consumption of 80 μW and a high spin-polarized ratio of 0.9 can be achieved, enabling high-speed and energy-efficient switching during writing. According to our design, the gate-controllable system can prevent undesired mixed reading and writing operations. Our results highlight TMDs as a promising material in spintronic memory devices.
期刊介绍:
The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.