Discovery of a Novel Macrocyclic Noncovalent CDK7 Inhibitor for Cancer Therapy

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Medicinal Chemistry Pub Date : 2024-11-09 DOI:10.1021/acs.jmedchem.4c02098
Hongfu Lu, Yihong Zhang, Jinxin Liu, Tao Jiang, Xiang Yu, Haoyu Zhang, Tao Liang, Jingjing Peng, Xin Cai, Xiaoling Lan, Jinmin Ren, Mei Ge, Jingyang Zhang, Jingjin Shang, Jiaojiao Yu, Hongcan Ren, Qiang Liu, Jinting Gao, Lili Tang, Xiao Ding, Man Zhang, Alex Aliper, Qiang Lu, Fusheng Zhou, Jiong Lan, Feng Ren, Alex Zhavoronkov
{"title":"Discovery of a Novel Macrocyclic Noncovalent CDK7 Inhibitor for Cancer Therapy","authors":"Hongfu Lu, Yihong Zhang, Jinxin Liu, Tao Jiang, Xiang Yu, Haoyu Zhang, Tao Liang, Jingjing Peng, Xin Cai, Xiaoling Lan, Jinmin Ren, Mei Ge, Jingyang Zhang, Jingjin Shang, Jiaojiao Yu, Hongcan Ren, Qiang Liu, Jinting Gao, Lili Tang, Xiao Ding, Man Zhang, Alex Aliper, Qiang Lu, Fusheng Zhou, Jiong Lan, Feng Ren, Alex Zhavoronkov","doi":"10.1021/acs.jmedchem.4c02098","DOIUrl":null,"url":null,"abstract":"Cyclin-dependent kinase 7 (CDK7) is a key regulator of the cell cycle and transcription, making it a promising target for cancer therapy. Although current CDK7 inhibitors have improved in their selectivity and druglike properties, CDK7 inhibitors have failed to progress through clinical development due to severe gastrointestinal and hematotoxic side effects. To mitigate these limitations, we have developed novel, macrocyclic, noncovalent CDK7 hit compounds <b>2</b> and <b>3</b> using a macrocyclization platform that has optimized these compounds from SY-5609, a leading clinical asset. We conducted extensive structure–activity relationship (SAR) studies to improve their potency, enhance oral bioavailability, and reduce intestinal distribution, which resulted in compound <b>13</b>. Compound <b>13</b> exhibits potent <i>in vitro</i> activity, good ADME properties, and robust <i>in vivo</i> antitumor activity in xenograft models as a monotherapy. Notably, compound <b>13</b> with lower basicity demonstrated improved Caco-2 permeability, reduced blood/plasma ratio, and reduced intestinal distribution in rats, thus mitigating gastrointestinal and hematotoxic side effects.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02098","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cyclin-dependent kinase 7 (CDK7) is a key regulator of the cell cycle and transcription, making it a promising target for cancer therapy. Although current CDK7 inhibitors have improved in their selectivity and druglike properties, CDK7 inhibitors have failed to progress through clinical development due to severe gastrointestinal and hematotoxic side effects. To mitigate these limitations, we have developed novel, macrocyclic, noncovalent CDK7 hit compounds 2 and 3 using a macrocyclization platform that has optimized these compounds from SY-5609, a leading clinical asset. We conducted extensive structure–activity relationship (SAR) studies to improve their potency, enhance oral bioavailability, and reduce intestinal distribution, which resulted in compound 13. Compound 13 exhibits potent in vitro activity, good ADME properties, and robust in vivo antitumor activity in xenograft models as a monotherapy. Notably, compound 13 with lower basicity demonstrated improved Caco-2 permeability, reduced blood/plasma ratio, and reduced intestinal distribution in rats, thus mitigating gastrointestinal and hematotoxic side effects.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发现用于癌症治疗的新型大环非共价 CDK7 抑制剂
细胞周期蛋白依赖性激酶 7(CDK7)是细胞周期和转录的关键调控因子,因此是一种很有前景的癌症治疗靶点。尽管目前的 CDK7 抑制剂在选择性和类药物特性方面都有所改进,但由于严重的胃肠道和血液毒副作用,CDK7 抑制剂未能在临床开发中取得进展。为了缓解这些局限性,我们利用大环化平台开发出了新型、大环、非共价 CDK7 受体化合物 2 和 3,该平台从领先的临床资产 SY-5609 中优化了这些化合物。我们进行了广泛的结构-活性关系 (SAR) 研究,以提高其药效、增强口服生物利用度并减少肠道分布,最终得到了化合物 13。作为一种单一疗法,化合物 13 在异种移植模型中表现出了强效的体外活性、良好的 ADME 特性和强大的体内抗肿瘤活性。值得注意的是,碱度较低的化合物 13 改善了 Caco-2 的渗透性,降低了血液/血浆比率,减少了大鼠的肠道分布,从而减轻了胃肠道和血液毒性副作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
期刊最新文献
Design, Synthesis, and Biological Evaluation of New Selective PDE4 Inhibitors for Topical Treatment of Psoriasis Prioritization of Eleven-Nineteen-Leukemia Inhibitors as Orally Available Drug Candidates for Acute Myeloid Leukemia Proline Analogues in Drug Design: Current Trends and Future Prospects Covalent Targeting of Histidine Residues with Aryl Fluorosulfates: Application to Mcl-1 BH3 Mimetics Unnatural Amino Acids: Strategies, Designs, and Applications in Medicinal Chemistry and Drug Discovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1