One-Shot Architecture Search and Transformation for Robust DOA Estimation

IF 5.7 2区 计算机科学 Q1 ENGINEERING, AEROSPACE IEEE Transactions on Aerospace and Electronic Systems Pub Date : 2024-11-07 DOI:10.1109/TAES.2024.3492139
Qing Wang;Shuang Li;Ruize Guo;Hua Chen;Ziwei Wang;Kai Guan;Zhiqiang Wu;Wei Liu
{"title":"One-Shot Architecture Search and Transformation for Robust DOA Estimation","authors":"Qing Wang;Shuang Li;Ruize Guo;Hua Chen;Ziwei Wang;Kai Guan;Zhiqiang Wu;Wei Liu","doi":"10.1109/TAES.2024.3492139","DOIUrl":null,"url":null,"abstract":"Given the challenges of direction-of-arrival (DOA) estimation methods under low signal-to-noise ratios (SNRs), we propose a one-shot architecture search and transformation DOA estimation (OAST-DOA) framework for robust DOA estimation. First, by formulating the DOA estimation problem as a multilabel classification task, the multichannel training data are constructed from the real covariance matrix under low SNRs. A long short-term memory network is introduced as a controller to guide the process of architecture search and optimal cell selection. In addition, to reduce the computational complexity without compromising performance, the computationally intensive operations are transformed into more efficient alternatives within the optimal cell via architecture transformation. Simulation results show that the proposed OAST-DOA method has significant advantages for scenarios with low SNRs and a relatively small number of snapshots, and exhibits robustness against array model errors.","PeriodicalId":13157,"journal":{"name":"IEEE Transactions on Aerospace and Electronic Systems","volume":"61 2","pages":"3642-3653"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Aerospace and Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10746362/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

Given the challenges of direction-of-arrival (DOA) estimation methods under low signal-to-noise ratios (SNRs), we propose a one-shot architecture search and transformation DOA estimation (OAST-DOA) framework for robust DOA estimation. First, by formulating the DOA estimation problem as a multilabel classification task, the multichannel training data are constructed from the real covariance matrix under low SNRs. A long short-term memory network is introduced as a controller to guide the process of architecture search and optimal cell selection. In addition, to reduce the computational complexity without compromising performance, the computationally intensive operations are transformed into more efficient alternatives within the optimal cell via architecture transformation. Simulation results show that the proposed OAST-DOA method has significant advantages for scenarios with low SNRs and a relatively small number of snapshots, and exhibits robustness against array model errors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于稳健 DOA 估计的单次架构搜索和变换
针对低信噪比(SNRs)条件下到达方向(DOA)估计方法存在的问题,提出了一种一次性结构搜索和变换DOA估计(OAST-DOA)框架,用于鲁棒DOA估计。首先,将DOA估计问题表述为一个多标签分类任务,在低信噪比条件下,利用实协方差矩阵构造多通道训练数据;引入长短期记忆网络作为控制器,指导结构搜索和最优单元选择过程。此外,为了在不影响性能的情况下降低计算复杂度,通过架构转换将计算密集型操作转换为最优单元内更有效的替代操作。仿真结果表明,所提出的OAST-DOA方法在低信噪比和相对较少的快照场景下具有明显的优势,并且对阵列模型误差具有鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
13.60%
发文量
433
审稿时长
8.7 months
期刊介绍: IEEE Transactions on Aerospace and Electronic Systems focuses on the organization, design, development, integration, and operation of complex systems for space, air, ocean, or ground environment. These systems include, but are not limited to, navigation, avionics, spacecraft, aerospace power, radar, sonar, telemetry, defense, transportation, automated testing, and command and control.
期刊最新文献
Nutcracker Genetic Algorithm for Task Scheduling in UAV Swarm MECwith Adaptive Caching Rotor-Failure-Aware Quadrotors Flight in Unknown Environments LMCNet: Lightweight Modality Compensation Network via Knowledge Distillation for Salient Ship Detection under Missing Modality Conditions Multi-AAVs Collision-Free Flocking and Navigation in Dynamic Environments Efficient and Robust Area Capture for Multi-Spacecraft Orbital Games Using Hopf Formula
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1