Enhanced Adsorption Kinetics and Capacity of a Stable CeF3@Ni3N Heterostructure for Methanol Electro-Reforming Coupled with Hydrogen Production

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Angewandte Chemie International Edition Pub Date : 2024-11-10 DOI:10.1002/anie.202416763
Kuan Deng, Xuesong Liu, Peng Liu, Xingbin Lv, Wen Tian, Junyi Ji
{"title":"Enhanced Adsorption Kinetics and Capacity of a Stable CeF3@Ni3N Heterostructure for Methanol Electro-Reforming Coupled with Hydrogen Production","authors":"Kuan Deng, Xuesong Liu, Peng Liu, Xingbin Lv, Wen Tian, Junyi Ji","doi":"10.1002/anie.202416763","DOIUrl":null,"url":null,"abstract":"Alkaline methanol-water electrolysis system is regarded as an appealing strategy for electro-reforming methanol into formate and producing hydrogen with low energy-consumption compared with alkaline water electrolysis. However, stability and selectivity under high current densities for practical application remain challenging. Herein, a CeF3@Ni3N nanosheets array anchored on carbon cloth (CeF3@Ni3N/CC) was fabricated. The gradual extrusion of F species from Ni(OH)2 lattices can stabilize hierarchical structure and construct abundant heterostructure interfaces. Moreover, CeF3 can modulate electron distribution of Ni3N, thus simultaneously enhancing the surface adsorption kinetics and capability of methanol and OH-, which is conducive to enhanced methanol oxidation reaction (MOR) activity and selectivity. Therefore, bifunctional CeF3@Ni3N/CC exhibits low potential of 1.43 V at 500 mA cm-2, along with high stability over 72 h and high faradaic efficiency (FEs) in MOR, as well as an overpotential of 76 mV to achieve 50 mA cm-2 for hydrogen evolution reaction (HER). Furthermore, membrane-free CeF3@Ni3N/CC||CeF3@Ni3N/CC cell for MOR||HER delivers high electrocatalytic activity, long-term stability and FEs at high current density of 300 mA cm-2. This study highlights the importance of optimizing surface adsorption behavior of active species, as well as rational design of highly efficient heterostructure electrocatalysts for methanol upgrading coupled with hydrogen production.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":null,"pages":null},"PeriodicalIF":16.1000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416763","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Alkaline methanol-water electrolysis system is regarded as an appealing strategy for electro-reforming methanol into formate and producing hydrogen with low energy-consumption compared with alkaline water electrolysis. However, stability and selectivity under high current densities for practical application remain challenging. Herein, a CeF3@Ni3N nanosheets array anchored on carbon cloth (CeF3@Ni3N/CC) was fabricated. The gradual extrusion of F species from Ni(OH)2 lattices can stabilize hierarchical structure and construct abundant heterostructure interfaces. Moreover, CeF3 can modulate electron distribution of Ni3N, thus simultaneously enhancing the surface adsorption kinetics and capability of methanol and OH-, which is conducive to enhanced methanol oxidation reaction (MOR) activity and selectivity. Therefore, bifunctional CeF3@Ni3N/CC exhibits low potential of 1.43 V at 500 mA cm-2, along with high stability over 72 h and high faradaic efficiency (FEs) in MOR, as well as an overpotential of 76 mV to achieve 50 mA cm-2 for hydrogen evolution reaction (HER). Furthermore, membrane-free CeF3@Ni3N/CC||CeF3@Ni3N/CC cell for MOR||HER delivers high electrocatalytic activity, long-term stability and FEs at high current density of 300 mA cm-2. This study highlights the importance of optimizing surface adsorption behavior of active species, as well as rational design of highly efficient heterostructure electrocatalysts for methanol upgrading coupled with hydrogen production.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稳定的 CeF3@Ni3N 异质结构在甲醇电转化和制氢过程中的吸附动力学和吸附容量的提高
与碱性水电解相比,碱性甲醇-水电解系统被认为是将甲醇电转化为甲酸盐并产生氢气的一种具有吸引力的策略,且能耗较低。然而,在实际应用中,高电流密度下的稳定性和选择性仍然具有挑战性。在此,我们制作了锚定在碳布上的 CeF3@Ni3N 纳米片阵列(CeF3@Ni3N/CC)。F物种从Ni(OH)2晶格中逐渐挤出,可稳定分层结构并构建丰富的异质结构界面。此外,CeF3 还能调节 Ni3N 的电子分布,从而同时增强表面对甲醇和 OH- 的吸附动力学和吸附能力,有利于提高甲醇氧化反应(MOR)的活性和选择性。因此,双功能 CeF3@Ni3N/CC 在 500 mA cm-2 的条件下具有 1.43 V 的低电位、72 h 的高稳定性和在甲醇氧化反应(MOR)中的高法拉第效率(FEs),以及在氢进化反应(HER)中实现 50 mA cm-2 的 76 mV 的过电位。此外,用于 MOR|||HER 的无膜 CeF3@Ni3N/CC 电池在 300 mA cm-2 的高电流密度下具有很高的电催化活性、长期稳定性和 FEs。这项研究强调了优化活性物种表面吸附行为的重要性,以及合理设计高效异质结构电催化剂用于甲醇升级和制氢的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
期刊最新文献
Organic Circularly Polarized Room‐Temperature Phosphorescence: Strategies, Applications and Challenges Bioinspired “Intermolecular Pocket” in Soft Molecular Crystal of Porous Organic Cage Exhibiting Reversible Guest Recognition Inside Front Cover: Two‐dimensional Supramolecular Polymorphism in Cyanine H‐ and J‐aggregates Heptannulated Perylene Diimides: Formation and Reactivity of Electron-Deficient Tropylium Cations and Heptafulvenes. Long-Term Single-Molecule Tracking in Living Cells Using Weak-Affinity Protein Labeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1