Simulated misuse of large language models and clinical credit systems

IF 12.4 1区 医学 Q1 HEALTH CARE SCIENCES & SERVICES NPJ Digital Medicine Pub Date : 2024-11-11 DOI:10.1038/s41746-024-01306-2
James T. Anibal, Hannah B. Huth, Jasmine Gunkel, Susan K. Gregurick, Bradford J. Wood
{"title":"Simulated misuse of large language models and clinical credit systems","authors":"James T. Anibal, Hannah B. Huth, Jasmine Gunkel, Susan K. Gregurick, Bradford J. Wood","doi":"10.1038/s41746-024-01306-2","DOIUrl":null,"url":null,"abstract":"In the future, large language models (LLMs) may enhance the delivery of healthcare, but there are risks of misuse. These methods may be trained to allocate resources via unjust criteria involving multimodal data - financial transactions, internet activity, social behaviors, and healthcare information. This study shows that LLMs may be biased in favor of collective/systemic benefit over the protection of individual rights and could facilitate AI-driven social credit systems.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-10"},"PeriodicalIF":12.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01306-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01306-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

In the future, large language models (LLMs) may enhance the delivery of healthcare, but there are risks of misuse. These methods may be trained to allocate resources via unjust criteria involving multimodal data - financial transactions, internet activity, social behaviors, and healthcare information. This study shows that LLMs may be biased in favor of collective/systemic benefit over the protection of individual rights and could facilitate AI-driven social credit systems.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模拟滥用大型语言模型和临床信用系统的情况
未来,大型语言模型(LLMs)可能会提高医疗服务的质量,但也存在滥用的风险。这些方法可能会被训练成通过涉及多模态数据(金融交易、互联网活动、社会行为和医疗保健信息)的不公正标准来分配资源。本研究表明,LLM 可能会偏向于集体/系统利益,而不是保护个人权利,并可能促进人工智能驱动的社会信用体系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
25.10
自引率
3.30%
发文量
170
审稿时长
15 weeks
期刊介绍: npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics. The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.
期刊最新文献
An iterative approach for estimating domain-specific cognitive abilities from large scale online cognitive data Interpretable machine learning model for digital lung cancer prescreening in Chinese populations with missing data Developing a Canadian artificial intelligence medical curriculum using a Delphi study Reinforcement learning model for optimizing dexmedetomidine dosing to prevent delirium in critically ill patients A strategy for cost-effective large language model use at health system-scale
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1