James T. Anibal, Hannah B. Huth, Jasmine Gunkel, Susan K. Gregurick, Bradford J. Wood
{"title":"Simulated misuse of large language models and clinical credit systems","authors":"James T. Anibal, Hannah B. Huth, Jasmine Gunkel, Susan K. Gregurick, Bradford J. Wood","doi":"10.1038/s41746-024-01306-2","DOIUrl":null,"url":null,"abstract":"In the future, large language models (LLMs) may enhance the delivery of healthcare, but there are risks of misuse. These methods may be trained to allocate resources via unjust criteria involving multimodal data - financial transactions, internet activity, social behaviors, and healthcare information. This study shows that LLMs may be biased in favor of collective/systemic benefit over the protection of individual rights and could facilitate AI-driven social credit systems.","PeriodicalId":19349,"journal":{"name":"NPJ Digital Medicine","volume":" ","pages":"1-10"},"PeriodicalIF":12.4000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41746-024-01306-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Digital Medicine","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41746-024-01306-2","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0
Abstract
In the future, large language models (LLMs) may enhance the delivery of healthcare, but there are risks of misuse. These methods may be trained to allocate resources via unjust criteria involving multimodal data - financial transactions, internet activity, social behaviors, and healthcare information. This study shows that LLMs may be biased in favor of collective/systemic benefit over the protection of individual rights and could facilitate AI-driven social credit systems.
期刊介绍:
npj Digital Medicine is an online open-access journal that focuses on publishing peer-reviewed research in the field of digital medicine. The journal covers various aspects of digital medicine, including the application and implementation of digital and mobile technologies in clinical settings, virtual healthcare, and the use of artificial intelligence and informatics.
The primary goal of the journal is to support innovation and the advancement of healthcare through the integration of new digital and mobile technologies. When determining if a manuscript is suitable for publication, the journal considers four important criteria: novelty, clinical relevance, scientific rigor, and digital innovation.