Consolidating the Oxygen Reduction with Sub-Polarized Graphitic Fe–N4 Atomic Sites for an Efficient Flexible Zinc–Air Battery

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-07 DOI:10.1021/acs.nanolett.4c03665
Wenfang Zhai, Jialei Li, Yahui Tian, Hang Liu, Yaoda Liu, Zhixin Guo, Thangavel Sakthivel, Licheng Bai, Xue-Feng Yu, Zhengfei Dai
{"title":"Consolidating the Oxygen Reduction with Sub-Polarized Graphitic Fe–N4 Atomic Sites for an Efficient Flexible Zinc–Air Battery","authors":"Wenfang Zhai, Jialei Li, Yahui Tian, Hang Liu, Yaoda Liu, Zhixin Guo, Thangavel Sakthivel, Licheng Bai, Xue-Feng Yu, Zhengfei Dai","doi":"10.1021/acs.nanolett.4c03665","DOIUrl":null,"url":null,"abstract":"The effectuation of the Zn–air battery (ZAB) is appealing for active and durable catalysts to kinetically drive the sluggish cathodic oxygen reduction reaction (ORR). Atomic metal-N<sub><i>x</i></sub>-C sites are widely witnessed with Pt-like activity, but their demetalations still severely restrict the durability in ORR. Here we have profiled an ordered hierarchical porous carbon supported Fe–N<sub>4</sub> single-atom (FeNC) catalyst by a template derivation method for efficient ORR and flexible ZAB studies. The FeNC structure is observed with a sub-polarized graphitic Fe–N<sub>4</sub> coordination with a shortened Fe–N bond for potentially consolidating the ORR, together with the hierarchical porous matrix for kinetical mass transfer. Resultantly, the optimized FeNC catalyst showcases Pt-beyond alkaline ORR activity (<i>E</i><sub>1/2</sub> = 0.95 V) with long-term durability for 100 h, delivering the flexible ZAB device with high power density (251 mW cm<sup>–2</sup>) and durable cycle life (80 h). This research underscores the criterion in rationalizing active and robust ORR catalysts through metal–nitrogen bond modulation.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03665","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The effectuation of the Zn–air battery (ZAB) is appealing for active and durable catalysts to kinetically drive the sluggish cathodic oxygen reduction reaction (ORR). Atomic metal-Nx-C sites are widely witnessed with Pt-like activity, but their demetalations still severely restrict the durability in ORR. Here we have profiled an ordered hierarchical porous carbon supported Fe–N4 single-atom (FeNC) catalyst by a template derivation method for efficient ORR and flexible ZAB studies. The FeNC structure is observed with a sub-polarized graphitic Fe–N4 coordination with a shortened Fe–N bond for potentially consolidating the ORR, together with the hierarchical porous matrix for kinetical mass transfer. Resultantly, the optimized FeNC catalyst showcases Pt-beyond alkaline ORR activity (E1/2 = 0.95 V) with long-term durability for 100 h, delivering the flexible ZAB device with high power density (251 mW cm–2) and durable cycle life (80 h). This research underscores the criterion in rationalizing active and robust ORR catalysts through metal–nitrogen bond modulation.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将氧还原与次极化石墨化 Fe-N4 原子位点相结合,制造高效柔性锌-空气电池
锌-空气电池(ZAB)的实现需要活性持久的催化剂来驱动缓慢的阴极氧还原反应(ORR)。原子金属-Nx-C 位点具有类似铂的活性,但它们的脱金属性仍然严重限制了 ORR 的耐久性。在此,我们采用模板推导法研究了一种有序分层多孔碳支撑的 Fe-N4 单原子(FeNC)催化剂,用于高效 ORR 和灵活的 ZAB 研究。通过观察发现,FeNC 结构具有亚极化石墨化的 Fe-N4 配位,Fe-N 键缩短,有可能巩固 ORR,而分层多孔基质则可实现动力学传质。因此,优化后的 FeNC 催化剂具有超越铂的碱性 ORR 活性(E1/2 = 0.95 V)和 100 小时的长期耐久性,可提供具有高功率密度(251 mW cm-2)和持久循环寿命(80 小时)的灵活 ZAB 器件。这项研究强调了通过金属-氮键调制实现活性和稳健 ORR 催化剂的合理化标准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Highly Monodisperse Stable Gold Nanorod Powder for Optical Sensor High-Performance Radiative Cooling Sunscreen Time-Domain-Filtered Terahertz Nanoscopy of Intrinsic Light–Matter Interactions Regulating Li2S Deposition and Accelerating Conversion Kinetics through Intracavity ZnS toward Low-Temperature Lithium–Sulfur Batteries Identifying the Role of Interfacial Long-Range Order in Regulating the Solid Electrolyte Interphase in Lithium Metal Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1