Ammonia and formate cosynthesis via nitrate electroreduction combined with methanol electrooxidation over nitrogen-doped carbon-encapsulated nickel iron phosphide

IF 6.1 1区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR Inorganic Chemistry Frontiers Pub Date : 2024-11-08 DOI:10.1039/d4qi02350a
Zongyi Wang, Jiuli Chang, Zhiyong Gao
{"title":"Ammonia and formate cosynthesis via nitrate electroreduction combined with methanol electrooxidation over nitrogen-doped carbon-encapsulated nickel iron phosphide","authors":"Zongyi Wang, Jiuli Chang, Zhiyong Gao","doi":"10.1039/d4qi02350a","DOIUrl":null,"url":null,"abstract":"Nitrate–methanol co-electrolysis involving the cathodic nitrate reduction reaction (NO<small><sub>3</sub></small>RR) combined with the anodic methanol oxidation reaction (MOR) is a viable way to synchronously produce ammonia (NH<small><sub>3</sub></small>) and formate <em>via</em> gentle, sustainable and energy-saving “E-refining” and “E-reforming” means. An efficient bifunctional catalyst for the NO<small><sub>3</sub></small>RR and MOR is pivotal to achieve such a goal. In this work, a nitrogen-doped carbon-encapsulated nickel iron phosphide hybrid (Ni<small><sub>2</sub></small>FeP@NC) was prepared as a bifunctional catalyst for the NO<small><sub>3</sub></small>RR and MOR, and its electrochemical performance for nitrate–methanol co-electrolysis was investigated. The Ni<small><sub>2</sub></small>FeP@NC catalyst exhibited a high NH<small><sub>3</sub></small> yield (0.47 mmol h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> at −0.35 V) and faradaic efficiency (FE, 93% at −0.15 V) for the NO<small><sub>3</sub></small>RR and simultaneously demonstrated high MOR efficiency for formate production (yield of 1.62 mmol h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> at 1.7 V and FE of around 95%). The bifunctional catalytic features of the nitrate–methanol co-electrolysis system enabled the concurrent production of NH<small><sub>3</sub></small> and formate at low input voltage. This work provides a viable paradigm for pairwise electrosynthesis of valuable chemicals <em>via</em> “E-refining” and “E-reforming” through the rational design of bifunctional catalysts.","PeriodicalId":79,"journal":{"name":"Inorganic Chemistry Frontiers","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry Frontiers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4qi02350a","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrate–methanol co-electrolysis involving the cathodic nitrate reduction reaction (NO3RR) combined with the anodic methanol oxidation reaction (MOR) is a viable way to synchronously produce ammonia (NH3) and formate via gentle, sustainable and energy-saving “E-refining” and “E-reforming” means. An efficient bifunctional catalyst for the NO3RR and MOR is pivotal to achieve such a goal. In this work, a nitrogen-doped carbon-encapsulated nickel iron phosphide hybrid (Ni2FeP@NC) was prepared as a bifunctional catalyst for the NO3RR and MOR, and its electrochemical performance for nitrate–methanol co-electrolysis was investigated. The Ni2FeP@NC catalyst exhibited a high NH3 yield (0.47 mmol h−1 cm−2 at −0.35 V) and faradaic efficiency (FE, 93% at −0.15 V) for the NO3RR and simultaneously demonstrated high MOR efficiency for formate production (yield of 1.62 mmol h−1 cm−2 at 1.7 V and FE of around 95%). The bifunctional catalytic features of the nitrate–methanol co-electrolysis system enabled the concurrent production of NH3 and formate at low input voltage. This work provides a viable paradigm for pairwise electrosynthesis of valuable chemicals via “E-refining” and “E-reforming” through the rational design of bifunctional catalysts.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在掺氮碳包封磷化镍铁上通过硝酸盐电还原结合甲醇电氧化作用合成氨和甲酸盐
涉及阴极硝酸盐还原反应(NO3RR)和阳极甲醇氧化反应(MOR)的硝酸盐-甲醇共电解是通过温和、可持续和节能的 "E-精制 "和 "E-重整 "方式同步生产氨(NH3)和甲酸盐的可行方法。要实现这一目标,高效的 NO3RR 和 MOR 双功能催化剂至关重要。本研究制备了掺氮碳包封磷化镍铁杂化物(Ni2FeP@NC),作为 NO3RR 和 MOR 的双功能催化剂,并研究了其在硝酸-甲醇共电解中的电化学性能。Ni2FeP@NC 催化剂在 NO3RR 中表现出较高的 NH3 产率(-0.35 V 时为 0.47 mmol h-1 cm-2)和法拉第效率(FE,-0.15 V 时为 93%),同时在甲酸生产中表现出较高的 MOR 效率(1.7 V 时产率为 1.62 mmol h-1 cm-2,FE 约为 95%)。硝酸-甲醇共电解系统的双功能催化特性使其能够在低输入电压下同时生产 NH3 和甲酸盐。这项研究通过合理设计双功能催化剂,为通过 "电精制 "和 "电重整 "成对电合成有价值的化学品提供了可行的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Inorganic Chemistry Frontiers
Inorganic Chemistry Frontiers CHEMISTRY, INORGANIC & NUCLEAR-
CiteScore
10.40
自引率
7.10%
发文量
587
审稿时长
1.2 months
期刊介绍: The international, high quality journal for interdisciplinary research between inorganic chemistry and related subjects
期刊最新文献
In-situ construction of donor-acceptor structured g-C3N4 nanotubes incorporated with pyridine heterocyclic rings for efficient photocatalytic water splitting Enhancement of the dynamic luminescence and self-recovery performance in Zn2+ co-doped Sr3Ga4O9: Sm3+ The use of single metal atoms-based photocatalysts for the production of ammonia through photocatalytic nitrogen fixation Unraveling the Correlation between Biological Effects and Halogen Substituents in Cobalt bis(dicarbollide) Pentagonal-bipyramidal Dysprosium(III) complexes with two apical phosphine oxide ligands and equatorial pentadentate N3O2 Schiff-base ligands: Breakdown of the apical magnetic axiality by strong equatorial crystal field†
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1