Anodization-Processed Colored Radiative Thermoregulatory Film

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-11-08 DOI:10.1021/acs.nanolett.4c04073
Shixiong Yu, Yuetong Zhou, Peijia Bai, Quan Zhang, Wenlong Cui, Boxiao Zhang, Rujun Ma
{"title":"Anodization-Processed Colored Radiative Thermoregulatory Film","authors":"Shixiong Yu, Yuetong Zhou, Peijia Bai, Quan Zhang, Wenlong Cui, Boxiao Zhang, Rujun Ma","doi":"10.1021/acs.nanolett.4c04073","DOIUrl":null,"url":null,"abstract":"Colored radiative thermal management materials (RTMM) not only provide superior thermoregulatory performance but also satisfy aesthetic requirements. However, the complexity of the preparation procedures and constrained color selection have hindered their widespread adoption. Here, we presented a facile one-step anodizing strategy for fabricating colored dual-mode RTMM based on titanium film (Ti) and P(VDF-HFP) with mid-infrared (MIR) emissivities of 0.07 and 0.96, respectively, which allow for on-demand temperature modulation (rise of 28.2 K and drop of 9 K) without energy consumption. Furthermore, demonstrations of a colored radiative warming membrane also validate the effectiveness of anodizing treatment. The colored Ti/nano PE membrane with 10.8 μm thickness enables a temperature rise of 2.3 K on real human skin, which is much higher than that of commercial fabric with 120 μm thickness (0.7 K). This strategy provides insights for the scalable fabrication and application of colored low emissivity materials, contributing to the goal of a sustainable society.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04073","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Colored radiative thermal management materials (RTMM) not only provide superior thermoregulatory performance but also satisfy aesthetic requirements. However, the complexity of the preparation procedures and constrained color selection have hindered their widespread adoption. Here, we presented a facile one-step anodizing strategy for fabricating colored dual-mode RTMM based on titanium film (Ti) and P(VDF-HFP) with mid-infrared (MIR) emissivities of 0.07 and 0.96, respectively, which allow for on-demand temperature modulation (rise of 28.2 K and drop of 9 K) without energy consumption. Furthermore, demonstrations of a colored radiative warming membrane also validate the effectiveness of anodizing treatment. The colored Ti/nano PE membrane with 10.8 μm thickness enables a temperature rise of 2.3 K on real human skin, which is much higher than that of commercial fabric with 120 μm thickness (0.7 K). This strategy provides insights for the scalable fabrication and application of colored low emissivity materials, contributing to the goal of a sustainable society.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
阳极氧化处理彩色辐射热调节膜
彩色辐射热管理材料(RTMM)不仅具有卓越的热调节性能,还能满足美学要求。然而,制备过程的复杂性和颜色选择的局限性阻碍了它们的广泛应用。在此,我们介绍了一种简单的一步阳极氧化策略,用于制造基于钛膜(Ti)和 P(VDF-HFP)的彩色双模 RTMM,它们的中红外(MIR)发射率分别为 0.07 和 0.96,可实现按需调温(升温 28.2 K 和降温 9 K),且不消耗能量。此外,彩色辐射增温膜的演示也验证了阳极氧化处理的有效性。厚度为 10.8 μm 的彩色钛/纳米聚乙烯膜可使真实人体皮肤的温度上升 2.3 K,远高于厚度为 120 μm 的商用织物(0.7 K)。这一策略为彩色低发射率材料的可扩展制造和应用提供了启示,有助于实现可持续社会的目标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Highly Monodisperse Stable Gold Nanorod Powder for Optical Sensor High-Performance Radiative Cooling Sunscreen Time-Domain-Filtered Terahertz Nanoscopy of Intrinsic Light–Matter Interactions Regulating Li2S Deposition and Accelerating Conversion Kinetics through Intracavity ZnS toward Low-Temperature Lithium–Sulfur Batteries Identifying the Role of Interfacial Long-Range Order in Regulating the Solid Electrolyte Interphase in Lithium Metal Batteries.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1