Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia

IF 10.7 2区 材料科学 Q1 CHEMISTRY, PHYSICAL Journal of Materials Chemistry A Pub Date : 2024-11-11 DOI:10.1039/d4ta06800a
Wanli Gao, Jan Michalička, Martin Pumera
{"title":"Atomic tuning of 3D printed carbon surface chemistry for electrocatalytic nitrite oxidation and reduction to ammonia","authors":"Wanli Gao, Jan Michalička, Martin Pumera","doi":"10.1039/d4ta06800a","DOIUrl":null,"url":null,"abstract":"Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO<small><sub>2</sub></small>OR) and nitrite reduction reaction (NO<small><sub>2</sub></small>RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO<small><sub>2</sub></small>. The resulting TiO<small><sub>2</sub></small>-coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO<small><sub>2</sub></small>OR, it exhibits a peak current density of 0.75 mA cm<small><sup>−2</sup></small> at 1.53 V <em>vs.</em> RHE, while for NO<small><sub>2</sub></small>RR, it achieves a yield rate of 630.5 µg h<small><sup>−1</sup></small> cm<small><sup>−2</sup></small> with a faradaic efficiency of 81.9% at −1.06 V <em>vs.</em> RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO<small><sub>2</sub></small>. The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":null,"pages":null},"PeriodicalIF":10.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ta06800a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Nitrite contamination in agricultural and industrial wastewater presents a critical impact on environmental sustainability, demanding efficient strategies for monitoring and remediation. This study addresses this challenge by developing cost-effective electrocatalysts for both nitrite detection and conversion to value-added ammonia. 3D printed carbon materials are explored as bifunctional platforms for the electrochemical nitrite oxidation reaction (NO2OR) and nitrite reduction reaction (NO2RR). Benefiting from the inherent Ti-dominated metallic impurities and intrinsic surface features of carbon nanotubes, 3D printed carbon electrodes exhibit electrocatalytic activity for both reactions. To enhance this activity, we further introduce an effective fabrication methodology that combines 3D printing of carbon substrates with precise surface modification using atomic layer deposition (ALD) of TiO2. The resulting TiO2-coated carbon electrode demonstrates significantly improved electrocatalytic properties. For NO2OR, it exhibits a peak current density of 0.75 mA cm−2 at 1.53 V vs. RHE, while for NO2RR, it achieves a yield rate of 630.5 µg h−1 cm−2 with a faradaic efficiency of 81.9% at −1.06 V vs. RHE. This enhancement in electrocatalytic activity is primarily attributed to the formation of abundant interfaces between the conductive carbon and ALD-coated TiO2. The developed methodology not only enables precise modification of 3D printed carbon surface chemistry but also presents a scalable method for electrocatalyst production.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对三维打印碳表面化学性质进行原子调谐,以实现亚硝酸盐的电催化氧化和还原成氨
农业和工业废水中的亚硝酸盐污染对环境的可持续发展造成了严重影响,需要高效的监测和补救策略。本研究通过开发具有成本效益的电催化剂来应对这一挑战,这种催化剂既能检测亚硝酸盐,又能将其转化为高附加值的氨。研究探索了三维打印碳材料作为电化学亚硝酸盐氧化反应(NO2OR)和亚硝酸盐还原反应(NO2RR)的双功能平台。利用碳纳米管固有的以钛为主的金属杂质和固有的表面特征,三维打印碳电极在这两个反应中都表现出了电催化活性。为了提高这种活性,我们进一步介绍了一种有效的制造方法,它将碳基底的三维打印与使用原子层沉积(ALD)TiO2 进行精确表面改性相结合。由此获得的 TiO2 涂层碳电极的电催化性能得到了显著改善。对于 NO2OR,它在 1.53 V(相对于 RHE)电压下的峰值电流密度为 0.75 mA cm-2;而对于 NO2RR,它在 -1.06 V(相对于 RHE)电压下的产率为 630.5 µg h-1 cm-2,远端效率为 81.9%。电催化活性的提高主要归功于导电碳和 ALD 涂层 TiO2 之间形成了丰富的界面。所开发的方法不仅能精确改变三维打印碳的表面化学性质,还为电催化剂的生产提供了一种可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Materials Chemistry A
Journal of Materials Chemistry A CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
19.50
自引率
5.00%
发文量
1892
审稿时长
1.5 months
期刊介绍: The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.
期刊最新文献
Regulating the electronic structure of catalysts via stable ceria and adjustable copper metal/oxide towards efficient overall water splitting Highly transparent all-perovskite luminescent solar concentrator/photovoltaic windows Correction: Achieving dynamic stability of single-crystal low-Co Ni-rich cathode material for high performance lithium batteries Ligand-protected and lowered-temperature hydrothermal synthesis of platinum encapsulated in TON zeolite for shape-selective hydrogenation of furfural to furfuryl alcohol High-Performance, Ambient-Processable Organic Solar Cells Achieved by Single Terpene-Based Entirely Eco-Friendly Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1