Electrode Informatics Accelerated Optimization for Catalyst Layer Key Parameters in Direct Methanol Fuel Cells

IF 5.8 3区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nanoscale Pub Date : 2024-11-11 DOI:10.1039/d4nr03026e
Lishou Ban, Danyang Huang, Yanyi Liu, Pengcheng Liu, Xihui Bian, Kaili Wang, Yifan Liu, Xijun Liu, Jia He
{"title":"Electrode Informatics Accelerated Optimization for Catalyst Layer Key Parameters in Direct Methanol Fuel Cells","authors":"Lishou Ban, Danyang Huang, Yanyi Liu, Pengcheng Liu, Xihui Bian, Kaili Wang, Yifan Liu, Xijun Liu, Jia He","doi":"10.1039/d4nr03026e","DOIUrl":null,"url":null,"abstract":"As the core component of direct methanol fuel cell, the catalyst layer plays the key role of material, proton and electron transport channels. However, due to the complexity of its system, optimizing its performance requires a large number of experiments and high costs. In this paper, finite element simulation combined with machine learning model is constructed to accelerate power density prediction and evaluate the influence of catalyst layer parameters on the maximum power density of direct methanol fuel cell. We built a fuel cell simulation model corresponding to different parameters, obtaining a database of more than 200 sets of 19 eigenvalues, and then used different machine learning models for training and prediction. Finally, three tree integration methods were selected to rank the importance of 19 characteristic parameters. In addition, we performed a high-throughput screening of 200,000 different parameter combinations based on Sequential Model-Based Algorithm Configuration. We selected the top 10 parameter combinations with high expected improvement score into numerical simulation model. The results show that a majority of the polarization curves obtained from the top combinations exceed the maximum power density of the original database. This method greatly saves the time of collecting fuel cell data for experiments and speeds up the parameter optimization process.","PeriodicalId":92,"journal":{"name":"Nanoscale","volume":"1 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4nr03026e","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

As the core component of direct methanol fuel cell, the catalyst layer plays the key role of material, proton and electron transport channels. However, due to the complexity of its system, optimizing its performance requires a large number of experiments and high costs. In this paper, finite element simulation combined with machine learning model is constructed to accelerate power density prediction and evaluate the influence of catalyst layer parameters on the maximum power density of direct methanol fuel cell. We built a fuel cell simulation model corresponding to different parameters, obtaining a database of more than 200 sets of 19 eigenvalues, and then used different machine learning models for training and prediction. Finally, three tree integration methods were selected to rank the importance of 19 characteristic parameters. In addition, we performed a high-throughput screening of 200,000 different parameter combinations based on Sequential Model-Based Algorithm Configuration. We selected the top 10 parameter combinations with high expected improvement score into numerical simulation model. The results show that a majority of the polarization curves obtained from the top combinations exceed the maximum power density of the original database. This method greatly saves the time of collecting fuel cell data for experiments and speeds up the parameter optimization process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
电极信息学加速优化直接甲醇燃料电池催化剂层的关键参数
催化剂层作为直接甲醇燃料电池的核心部件,起着物质、质子和电子传输通道的关键作用。然而,由于其系统的复杂性,优化其性能需要大量的实验和高昂的成本。本文构建了有限元仿真与机器学习相结合的模型,以加速功率密度预测,并评估催化剂层参数对直接甲醇燃料电池最大功率密度的影响。我们建立了与不同参数相对应的燃料电池仿真模型,获得了 200 多组 19 个特征值的数据库,然后使用不同的机器学习模型进行训练和预测。最后,我们选择了三种树状整合方法来对 19 个特征参数的重要性进行排序。此外,我们还基于基于序列模型的算法配置,对 20 万种不同的参数组合进行了高通量筛选。我们选择了预期改进得分较高的前 10 个参数组合,并将其纳入数值模拟模型。结果表明,前几种组合得到的偏振曲线绝大多数都超过了原始数据库的最大功率密度。这种方法大大节省了收集燃料电池实验数据的时间,加快了参数优化过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale
Nanoscale CHEMISTRY, MULTIDISCIPLINARY-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
12.10
自引率
3.00%
发文量
1628
审稿时长
1.6 months
期刊介绍: Nanoscale is a high-impact international journal, publishing high-quality research across nanoscience and nanotechnology. Nanoscale publishes a full mix of research articles on experimental and theoretical work, including reviews, communications, and full papers.Highly interdisciplinary, this journal appeals to scientists, researchers and professionals interested in nanoscience and nanotechnology, quantum materials and quantum technology, including the areas of physics, chemistry, biology, medicine, materials, energy/environment, information technology, detection science, healthcare and drug discovery, and electronics.
期刊最新文献
Holey etching strategy of siloxene nanosheets to improve the rate performance of photo-assisted Li–O2 batteries Enantiomorphic single component conducting nickel(II) and platinum(II) bis(diethyl-dddt) crystalline complexes† Facile synthesis of in situ carbon-coated CoS2 micro/nano-spheres as high-performance anode materials for sodium-ion batteries A layered Janus Metastructure for multi-physical detection based on second harmonic wave Correction: Cytomembrane-mimicking nanocarriers with a scaffold consisting of a CD44-targeted endogenous component for effective asparaginase supramolecule delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1