Seeing the Invisible: Recovering Surveillance Video With COTS mmWave Radar

IF 7.7 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Mobile Computing Pub Date : 2024-08-19 DOI:10.1109/TMC.2024.3445507
Mingda Han;Huanqi Yang;Mingda Jia;Weitao Xu;Yanni Yang;Zhijian Huang;Jun Luo;Xiuzhen Cheng;Pengfei Hu
{"title":"Seeing the Invisible: Recovering Surveillance Video With COTS mmWave Radar","authors":"Mingda Han;Huanqi Yang;Mingda Jia;Weitao Xu;Yanni Yang;Zhijian Huang;Jun Luo;Xiuzhen Cheng;Pengfei Hu","doi":"10.1109/TMC.2024.3445507","DOIUrl":null,"url":null,"abstract":"Video surveillance systems play a crucial role in ensuring public safety and security by capturing and monitoring critical events in various areas. However, traditional surveillance cameras face limitations when it comes to malicious physical damage or obscuring by offenders. To overcome this limitation, we propose \n<sc>m<inline-formula><tex-math>$^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic></alternatives></inline-formula> Vision</small>\n, which is the first millimeter-wave (mmWave)-based video reconstruction system designed to enhance existing video surveillance cameras. \n<sc>m<inline-formula><tex-math>$^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic></alternatives></inline-formula> Vision</small>\n utilizes mmWave to sense the profile and motion signature of the target, integrating it with previously acquired visual data about the environment and the target's appearance, thereby facilitating the reconstruction of surveillance video. Specifically, our proposed system incorporates a dual-stage mmWave signal denoising algorithm to efficiently eliminate the noise and multiple-input multiple-output virtual antenna enhanced heatmap generation (MVAE-HG) method to obtain fine-grained mmWave heatmaps responsive to the target's profile and motion information. Moreover, we design the mm2Video generative network that first employs a multi-modal fusion module to fuse the mmWave and pre-acquired visual data, then use a conditional generative adversarial network (cGAN)-based video reconstruction module for surveillance video reconstruction. We conducted comprehensive experiments on \n<sc>m<inline-formula><tex-math>$^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic></alternatives></inline-formula> Vision</small>\n using a commercial mmWave radar and four surveillance cameras across various environments, with the participation of seven individuals. Evaluation results show that \n<sc>m<inline-formula><tex-math>$^{2}$</tex-math><alternatives><mml:math><mml:msup><mml:mrow/><mml:mn>2</mml:mn></mml:msup></mml:math><inline-graphic></alternatives></inline-formula> Vision</small>\n can achieve an average structural similarity index measure (SSIM) of 0.93, demonstrating its effectiveness and potential.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"23 12","pages":"14592-14606"},"PeriodicalIF":7.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10638821/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Video surveillance systems play a crucial role in ensuring public safety and security by capturing and monitoring critical events in various areas. However, traditional surveillance cameras face limitations when it comes to malicious physical damage or obscuring by offenders. To overcome this limitation, we propose m$^{2}$2 Vision , which is the first millimeter-wave (mmWave)-based video reconstruction system designed to enhance existing video surveillance cameras. m$^{2}$2 Vision utilizes mmWave to sense the profile and motion signature of the target, integrating it with previously acquired visual data about the environment and the target's appearance, thereby facilitating the reconstruction of surveillance video. Specifically, our proposed system incorporates a dual-stage mmWave signal denoising algorithm to efficiently eliminate the noise and multiple-input multiple-output virtual antenna enhanced heatmap generation (MVAE-HG) method to obtain fine-grained mmWave heatmaps responsive to the target's profile and motion information. Moreover, we design the mm2Video generative network that first employs a multi-modal fusion module to fuse the mmWave and pre-acquired visual data, then use a conditional generative adversarial network (cGAN)-based video reconstruction module for surveillance video reconstruction. We conducted comprehensive experiments on m$^{2}$2 Vision using a commercial mmWave radar and four surveillance cameras across various environments, with the participation of seven individuals. Evaluation results show that m$^{2}$2 Vision can achieve an average structural similarity index measure (SSIM) of 0.93, demonstrating its effectiveness and potential.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
看见看不见的东西:利用 COTS 毫米波雷达恢复监控视频
视频监控系统通过捕捉和监控各个领域的关键事件,在确保公共安全和安保方面发挥着至关重要的作用。然而,传统的监控摄像机在遭到恶意物理破坏或被犯罪分子遮挡时会受到限制。为了克服这一局限,我们提出了 m$^{2}$2 Vision,这是首个基于毫米波(mmWave)的视频重建系统,旨在增强现有的视频监控摄像机。m$^{2}$2 Vision 利用毫米波来感知目标的轮廓和运动特征,并将其与之前获取的环境和目标外观视觉数据相结合,从而促进监控视频的重建。具体来说,我们提出的系统采用了双级毫米波信号去噪算法来有效消除噪声,并采用多输入多输出虚拟天线增强热图生成(MVAE-HG)方法来获得响应目标轮廓和运动信息的细粒度毫米波热图。此外,我们还设计了 mm2Video 生成网络,该网络首先采用多模态融合模块融合毫米波和预先获取的视觉数据,然后使用基于条件生成对抗网络(cGAN)的视频重构模块进行监控视频重构。我们使用商用毫米波雷达和四台监控摄像机在不同环境下对 m$^{2}$2 Vision 进行了全面实验,共有七人参与。评估结果表明,m$^{2}$2 Vision 的平均结构相似性指数(SSIM)达到了 0.93,证明了它的有效性和潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Transactions on Mobile Computing
IEEE Transactions on Mobile Computing 工程技术-电信学
CiteScore
12.90
自引率
2.50%
发文量
403
审稿时长
6.6 months
期刊介绍: IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.
期刊最新文献
Efficient Coordination of Federated Learning and Inference Offloading at the Edge: A Proactive Optimization Paradigm Multi-User Task Offloading in UAV-Assisted LEO Satellite Edge Computing: A Game-Theoretic Approach Model Decomposition and Reassembly for Purified Knowledge Transfer in Personalized Federated Learning FedCRAC: Improving Federated Classification Performance on Long-Tailed Data via Classifier Representation Adjustment and Calibration Scrava: Super Resolution-Based Bandwidth-Efficient Cross-Camera Video Analytics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1