Wen Qiao, Xinzhuo Zhang, Shiming Yan, Ru Bai and Tiejun Zhou
{"title":"A direct Z-scheme photocatalyst PtS2/HfGe2N4 van der Waals heterostructure for highly efficient water splitting: first-principles study†","authors":"Wen Qiao, Xinzhuo Zhang, Shiming Yan, Ru Bai and Tiejun Zhou","doi":"10.1039/D4CE00956H","DOIUrl":null,"url":null,"abstract":"<p >The construction of semiconductor van der Waals (vdW) heterostructures has emerged as a promising approach to enhance the performance of photocatalysts for water splitting. In this study, a PtS<small><sub>2</sub></small>/HfGe<small><sub>2</sub></small>N<small><sub>4</sub></small> vdW heterojunction was designed, and its photocatalytic properties were investigated using first-principles calculations. The results indicate that the heterojunction exhibits strong light absorption and features a type-II band alignment. Charge transfer within the heterojunction creates an internal electric field, enabling its action as a direct Z-scheme photocatalyst. Additionally, its well-suited band edge position facilitates the redox reactions required for water splitting. Notably, the heterojunction demonstrates a high-intensity light absorption coefficient of 3.8 × 10<small><sup>5</sup></small> cm<small><sup>−1</sup></small> at 2.3 eV corresponding to the green light in the visible spectrum, highlighting the heterojunction's potential for photocatalytic water splitting applications.</p>","PeriodicalId":70,"journal":{"name":"CrystEngComm","volume":" 44","pages":" 6336-6345"},"PeriodicalIF":2.6000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CrystEngComm","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/ce/d4ce00956h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The construction of semiconductor van der Waals (vdW) heterostructures has emerged as a promising approach to enhance the performance of photocatalysts for water splitting. In this study, a PtS2/HfGe2N4 vdW heterojunction was designed, and its photocatalytic properties were investigated using first-principles calculations. The results indicate that the heterojunction exhibits strong light absorption and features a type-II band alignment. Charge transfer within the heterojunction creates an internal electric field, enabling its action as a direct Z-scheme photocatalyst. Additionally, its well-suited band edge position facilitates the redox reactions required for water splitting. Notably, the heterojunction demonstrates a high-intensity light absorption coefficient of 3.8 × 105 cm−1 at 2.3 eV corresponding to the green light in the visible spectrum, highlighting the heterojunction's potential for photocatalytic water splitting applications.