Tao Xu, Tao Qian, Chengsheng Wu, Jingtong Zhang, Jie Wang, Hiroyuki Hirakata, Takayuki Kitamura, Takahiro Shimada
{"title":"Ultrahigh-Density Polar Vortex Lattice in Square-Shaped Moiré Bilayers of Lead Chalcogenides","authors":"Tao Xu, Tao Qian, Chengsheng Wu, Jingtong Zhang, Jie Wang, Hiroyuki Hirakata, Takayuki Kitamura, Takahiro Shimada","doi":"10.1021/acs.nanolett.4c03999","DOIUrl":null,"url":null,"abstract":"Nanoscale exotic polar topological structures, such as vortices and skyrmions, hold promise for next-generation electronic devices, yet their spontaneous formation in 2D van der Waals (vdW) materials remains quite challenging. Herein, we demonstrate from first-principles that ultrahigh-density polar vortices emerge in the square moiré bilayer formed by twisting two layers of centrosymmetric PbS with the <i>D</i><sub>4<i>h</i></sub> point group. The emerged ferroelectricity arises from the inherent complex strain associated with the twisted structures, and the resulting electron polarization is much greater than that obtained in sliding ferroelectricity. Notably, the engineered strain patterns are characterized by peculiar inhomogeneous in-plane fields with a checkerboard distribution of uniaxial tension. This nanoscale nonuniform strain produces an ultrahigh-density vortex polarization lattice. The results from our study not only reveals a new mechanism for electric polarization and polar topologies in moiré bilayers but also provides opportunities for designing 2D ultrahigh-density electric devices.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c03999","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nanoscale exotic polar topological structures, such as vortices and skyrmions, hold promise for next-generation electronic devices, yet their spontaneous formation in 2D van der Waals (vdW) materials remains quite challenging. Herein, we demonstrate from first-principles that ultrahigh-density polar vortices emerge in the square moiré bilayer formed by twisting two layers of centrosymmetric PbS with the D4h point group. The emerged ferroelectricity arises from the inherent complex strain associated with the twisted structures, and the resulting electron polarization is much greater than that obtained in sliding ferroelectricity. Notably, the engineered strain patterns are characterized by peculiar inhomogeneous in-plane fields with a checkerboard distribution of uniaxial tension. This nanoscale nonuniform strain produces an ultrahigh-density vortex polarization lattice. The results from our study not only reveals a new mechanism for electric polarization and polar topologies in moiré bilayers but also provides opportunities for designing 2D ultrahigh-density electric devices.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.