Zhihao Zhou, Hongbing Wu, Jingjing Fu, Gaoqiang Zhang, Peng Li, Yushu Xia, Xue Wang, Yuanyuan Li, Jin Yang
{"title":"Fully Integrated Passive Wireless Sensor with Mechanical–Electrical Double-Gradient for Multifunctional Healthcare Monitoring","authors":"Zhihao Zhou, Hongbing Wu, Jingjing Fu, Gaoqiang Zhang, Peng Li, Yushu Xia, Xue Wang, Yuanyuan Li, Jin Yang","doi":"10.1021/acs.nanolett.4c04215","DOIUrl":null,"url":null,"abstract":"Accurate, effective, and continuous monitoring of pressure, moisture, and temperature is essential for routine health assessments and professional patient care. In this study, we present a fully integrated multiparameter passive wireless sensor (MWS) that employs a mechanical–electrical dual-gradient structure design. The unique gradient porous structure endows the MWS with significant advantages in terms of detection dimensions (pressure, moisture, and temperature), sensitivity, and stability. Compared to single mechanical gradient designs, the sensor demonstrates 2.6 times higher pressure sensitivity and a 5-tier moisture detection capability. By bridging the technology gap between high-precision multiparameter sensing, wireless communication, and energy management, the MWS is capable of measuring multiple physiological parameters, including breath, ballistocardiograph, moisture, and temperature at multiple points, providing real-time assessments of the physiological state of the subjects. This work offers valuable quantitative insights for caregivers and paves the way for significant advancements in personal healthcare management.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":null,"pages":null},"PeriodicalIF":9.6000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04215","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Accurate, effective, and continuous monitoring of pressure, moisture, and temperature is essential for routine health assessments and professional patient care. In this study, we present a fully integrated multiparameter passive wireless sensor (MWS) that employs a mechanical–electrical dual-gradient structure design. The unique gradient porous structure endows the MWS with significant advantages in terms of detection dimensions (pressure, moisture, and temperature), sensitivity, and stability. Compared to single mechanical gradient designs, the sensor demonstrates 2.6 times higher pressure sensitivity and a 5-tier moisture detection capability. By bridging the technology gap between high-precision multiparameter sensing, wireless communication, and energy management, the MWS is capable of measuring multiple physiological parameters, including breath, ballistocardiograph, moisture, and temperature at multiple points, providing real-time assessments of the physiological state of the subjects. This work offers valuable quantitative insights for caregivers and paves the way for significant advancements in personal healthcare management.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.